- 1 Psychiatric disorders converge on common pathways but diverge in cellular context,
- 2 spatial distribution, and directionality of genetic effects
- 4 Worrawat Engchuan^{1,2}, Omar Shanta^{3,4}, Kuldeep Kumar⁵, Jeffrey R. MacDonald^{1,2}, Bhooma
- 5 Thiruvahindrapuram^{1,2}, Omar Hamdan^{1,2}, Marieke Klein^{4,6,7}, Adam Maihofer^{4,8,9}, James
- 6 Guevara⁴, Oanh Hong⁴, Guillaume Huguet¹⁰, Molly Sacks^{3,4}, Mohammad Ahangari⁴, Rayssa
- 7 M.M.W. Feitosa^{1,2,11}, Kara Han^{1,2}, Marla Mendes^{1,2}, Xiaopu Zhou^{1,2}, Nelson X. Bautista^{1,2},
- 8 Giovanna Pellecchia^{1,2}, Zhouzhi Wang^{1,2}, Daniele Merico^{1,12}, Ryan K.C. Yuen^{2,13}, Brett
- 9 Trost^{2,13,14}, Ida Sønderby^{15,16,17}, Mark J. Adams¹⁸, Rolf Adolfsson¹⁹, Ingrid Agartz^{20,21,22}, Allison E.
- 10 Aiello²³, Martin Alda^{24,25}, Judith Allardyce²⁶, Ananda B. Amstadter²⁷, Till F.M. Andlauer²⁸, Ole
- 11 A. Andreassen^{15,16,29}, María S. Artigas^{30,31,32,33}, S. Bryn Austin^{34,35,36}, Muhammad Ayub³⁷,
- 12 Dewleen G. Baker⁴, Nick Bass³⁸, Bernhard T. Baune^{39,40,41}, Maximilian Bayas⁴², Klaus Berger⁴³,
- 13 Joanna M. Biernacka^{44,45}, Tim Bigdeli⁴⁶, Jonathan I. Bisson⁴⁷, Douglas Blackwood²⁶, Marco
- 14 Boks⁴⁸, David Braff⁴, Elvira Bramon³⁸, Gerome Breen⁴⁹, Tanja Brueckl⁵⁰, Richard A. Bryant⁵¹,
- 15 Cynthia M. Bulik^{52,53,54}, Joseph Buxbaum⁵⁵, Murray J. Cairns^{56,57}, Jose M. Caldas-de-Almeida⁵⁸,
- 16 Megan Campbell⁵⁹, Dominique Campion⁶⁰, Vaughan J. Carr^{61,62}, Enrique Castelao⁶³, Boris
- 17 Chaumette⁶⁴, Sven Cichon⁶⁵, David Cohen^{66,67}, Aiden Corvin⁶⁸, Nicholas Craddock⁶⁹, Jennifer
- 18 Crosbie^{70,71}, Darrina Czamara⁷², Udo Dannlowski^{73,74}, Franziska Degenhardt⁶⁵, Douglas L.
- 19 Delahanty⁷⁵, Astrid Dempfle⁷⁶, Guillaume Desachy^{77,78}, Arianna Di Florio⁷⁹, Faith B.
- 20 Dickerson⁸⁰, Srdjan Djurovic^{15,81,82}, Katharina Domschke⁸³, Lisa Douglas⁸⁴, Ole K. Drange^{82,85},
- 21 Laramie E. Duncan^{86,87}, Howard J. Edenberg^{88,89}, Tonu Esko⁹⁰, Steve Faraone⁹¹, Norah C.
- 22 Feeny⁹², Andreas J. Forstner^{93,94,95,96,97}, Barbara Franke^{98,99}, Mark Frye¹⁰⁰, Dong-jing Fu¹⁰¹,
- 23 Janice M. Fullerton^{102,103}, Anna Gareeva^{104,105,106,107}, Linda Garvert¹⁰⁸, Justine M. Gatt⁵¹, Pablo
- 24 Gejman¹⁰⁹, Daniel H. Geschwind¹¹⁰, Ina Giegling¹¹¹, Stephen J. Glatt¹¹², Joe Glessner^{113,114,115},
- 25 Fernando S. Goes¹¹⁶, Katherine Gordon-Smith¹¹⁷, Hans Grabe¹⁰⁸, Melissa J. Green¹¹⁸, Michael
- 26 F. Green^{119,120}, Tiffany Greenwood⁴, Maria Grigoroiu-Serbanescu¹²¹, Raquel E. Gur¹²², Ruben C.
- 27 Gur¹²², Jose Guzman-Parra¹²³, Jan Haavik¹²⁴, Tim Hahn⁷⁴, Hakon Hakonarson^{113,114,115}, Joachim
- 28 Hallmayer^{125,126}, Marian L. Hamshere¹²⁷, Annette M. Hartmann¹²⁸, Arsalan Hassan¹²⁹, Caroline
- 29 Hayward¹³⁰, Johannes Hebebrand^{131,132}, Sian M.J. Hemmings^{133,134}, Stefan Herms⁶⁵, Marisol
- 30 Herrera-Rivero^{39,73,135}, Anke Hinney^{132,136,137}, Georg Homuth¹³⁸, Andrés Ingason¹³⁹, Lucas T.
- 31 Ito^{140,141,142,143,144}, Nakao Iwata¹⁴⁵, Ian Jones¹⁴⁶, Lisa A. Jones¹¹⁷, Lina Jonsson¹⁴⁷, Erik G.
- 32 Jönsson^{20,21}, René S. Kahn¹⁴³, Robert Karlsson¹⁴⁸, Milissa L. Kaufman^{149,150}, John R. Kelsoe⁴,
- 33 James L. Kennedy^{70,151}, Anthony King¹⁵², Tilo Kircher^{153,154}, George Kirov¹⁵⁵, Per
- 34 Knappskog^{156,157}, James A. Knowles^{158,159}, Nene Kobayashi¹⁶⁰, Karestan C. Koenen¹⁶¹, Bettina
- 35 Konte¹²⁸, Mayuresh Korgaonkar¹⁶², Kaarina Kowalec¹⁴⁸, Marie-Odile Krebs⁶⁴, Mikael
- 36 Landén^{147,148}, Claudine Laurent-Levinson^{66,163}, Lauren A. Lebois^{150,164}, Doug Levinson⁸⁶, Cathryn
- 37 Lewis^{49,165}, Qingqin Li¹⁰¹, Israel Liberzon¹⁶⁶, Greg Light⁴, Sandra K. Loo¹⁶⁷, Yi Lu^{148,168}, Susanne
- 38 Lucae⁵⁰, Charles Marmar¹⁶⁹, Nicholas G. Martin¹⁷⁰, Fermin Mayoral¹²³, Andrew M.
- 39 McIntosh¹⁷¹, Katie A. McLaughlin¹⁷², Samuel A. McLean^{173,174}, Andrew McQuillin³⁸, Sarah E.
- 40 Medland^{175,176,177}, Andreas Meyer-Lindenberg¹⁷⁸, Vihra Milanova¹⁷⁹, Philip B. Mitchell¹¹⁸,
- 41 Esther Molina^{180,181}, Bryan Mowry^{182,183}, Bertram Muller-Myhsok^{184,185}, Niamh Mullins^{140,143,144},
- 42 Robin Murray¹⁸⁶, Markus M. Nöthen⁶⁵, John I. Nurnberger Jr^{187,188}, Kevin S. O'Connell^{29,82}, Roel
- 43 A. Ophoff¹⁸⁹, Holly K. Orcutt¹⁹⁰, Michael J. Owen¹⁹¹, Aarno Palotie^{192,193,194}, Carlos Pato¹⁹⁵,
- 44 Michele Pato¹⁹⁵, Joanna Pawlak¹⁹⁶, Triinu Peters^{132,136,137}, Tracey L. Petryshen¹⁹⁷, Giorgio
- 45 Pistis⁶³, James B. Potash¹¹⁶, John Powell¹⁹⁸, Martin Preisig⁶³, Digby Quested¹⁹⁹, Josep A.

```
<sup>1</sup> Marcella Rietschel<sup>203</sup>, Victoria B. Risbrough<sup>4,8</sup>, Margarita Rivera<sup>181,204</sup>, Alex O. Rothbaum<sup>201,205</sup>,
 <sup>2</sup> Barbara O. Rothbaum<sup>201</sup>, Dan Rujescu<sup>111</sup>, Takeo Saito<sup>145</sup>, Alan R. Sanders<sup>206</sup>, Russell J.
 3 Schachar<sup>70,71</sup>, Peter R. Schofield<sup>118</sup>, Eva C. Schulte<sup>65,207,208,209,210</sup>, Thomas G. Schulze<sup>209</sup>, Laura J.
 4 Scott<sup>211</sup>, Soraya Seedat<sup>212,213</sup>, Christina Sheerin<sup>27</sup>, Jianxin Shi<sup>214</sup>, Pamela Sklar<sup>215</sup>, Susan
 5 Smalley<sup>167,216</sup>, Olav B. Smeland<sup>29,82</sup>, Jordan W. Smoller<sup>217,218</sup>, Edmund Sonuga-Barke<sup>219</sup>, David
 6 St. Clair<sup>220</sup>, Nils Eiel Steen<sup>29,82,221</sup>, Dan Stein<sup>222</sup>, Frederike Stein<sup>153,154</sup>, Murray B. Stein<sup>4,223,224</sup>,
 7 Fabian Streit<sup>178,203,225,226</sup>, Neal Swerdlow<sup>4</sup>, Florence Thibaut<sup>227,228</sup>, Johan H. Thygesen<sup>38,229</sup>, Ilgiz
 8 Timerbulatov<sup>106,230,231</sup>, Claudio Toma<sup>232,233</sup>, Edward Trapido<sup>234</sup>, Micheline Tremblay<sup>235</sup>, Ming T.
 9 Tsuang<sup>4</sup>, Monica Uddin<sup>236</sup>, Marquis P. Vawter<sup>237</sup>, John B. Vincent<sup>70,151</sup>, Henry Völzke<sup>238</sup>, James
10 T. Walters<sup>191</sup>, Cynthia S. Weickert<sup>103,118</sup>, Lauren A. Weiss<sup>77</sup>, Myrna M. Weissman<sup>239,240</sup>, Thomas
11 Werge<sup>241</sup>, Stephanie H. Witt<sup>203,225</sup>, Miguel Xavier<sup>242</sup>, Robert Yolken<sup>243</sup>, Ross M. Young<sup>244,245</sup>,
12 Tetyana Zayats<sup>246,247,248</sup>, Lori A. Zoellner<sup>249</sup>, AGP Consortium, PEIC Psychosis Endophenotypes
13 International Consortium, ADHD Working Group of the Psychiatric Genomics Consortium,
14 Autism Working Group of the Psychiatric Genomics Consortium, Bipolar Disorder Working
15 Group of the Psychiatric Genomics Consortium, Major Depressive Disorder Working Group
16 of the Psychiatric Genomics Consortium, PTSD Working Group of the Psychiatric Genomics
17 Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, CNV
18 Working Group of the Psychiatric Genomics Consortium, Kimberley Kendall<sup>69</sup>, Brien Riley<sup>250</sup>,
19 Naomi R. Wray<sup>251,252</sup>, Michael C. O'Donovan<sup>69</sup>, Patrick F. Sullivan<sup>148,253</sup>, Sandra
20 Sanchez-Roige<sup>4,254,255</sup>, Caroline M. Nievergelt<sup>4,256</sup>, Sébastien Jacquemont<sup>5,257</sup>, Stephen W.
21 Scherer<sup>1,2,13,258</sup>*, Jonathan Sebat<sup>4,254,259,260</sup>*
<sup>1</sup>The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada,
<sup>23</sup> Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON,
24 Canada, <sup>3</sup>Bioinformatics and Systems Biology Graduate Program, University of California San
25 Diego, La Jolla, CA, USA, <sup>4</sup>Department of Psychiatry, University of California San Diego, La
26 Jolla, CA, USA, <sup>5</sup>Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal,
27 QC, Canada, <sup>6</sup>Donders Institute for Brain, Cognition and Behaviour, Radboud University
28 Medical Center, Nijmegen, The Netherlands, <sup>7</sup>Department of Human Genetics, Radboud
29 University Medical Center, Nijmegen, The Netherlands, 8Veterans Affairs San Diego
30 Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA,
31 <sup>9</sup>Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA, <sup>10</sup>CHU
32 Sainte-Justine Azrieli Research Center, Université de Montréal, Montreal, QC, Canada,
33 <sup>11</sup>Institute of Medical Science, University of Toronto, Toronto, ON, Canada, <sup>12</sup>Tahoe
34 Therapeutics (formerly Vevo), South San Francisco, CA, USA, <sup>13</sup>Department of Molecular
35 Genetics, University of Toronto, Toronto, ON, Canada, <sup>14</sup>Molecular Medicine Program, The
36 Hospital for Sick Children, Toronto, ON, Canada, <sup>15</sup>KG Jebsen Centre for Neurodevelopmental
37 disorders, University of Oslo, Oslo, Norway, <sup>16</sup>Centre for Precision Psychiatry, University of
38 Oslo, Oslo, Norway, <sup>17</sup>Department of Medical Genetics, Oslo University Hospital, Oslo,
```

- 39 Norway, ¹⁸Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK, 40 ¹⁹Department of Clinical Science, Umeå University, Umeå, Sweden, ²⁰Institute of Clinical 41 Medicine, University of Oslo, Oslo, Norway, ²¹Centre for Psychiatry Research, Department of
- 42 Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm
- 43 Region, Stockholm, Sweden, ²²Department of Psychiatric Research, Diakonhjemmet Hospital,
- 44 Oslo, Norway, ²³Department of Epidemiology, Columbia University, Robert N Butler Columbia
- 45 Aging Center, New York, NY, US, ²⁴National Institute of Mental Health, Klecany, Czech
- 46 Republic, ²⁵Department of Psychiatry, Dalhousie University, Halifax, NS, Canada, ²⁶Division of

```
1 Psychiatry, University of Edinburgh, Edinburgh, UK, <sup>27</sup>Department of Psychiatry, Virginia
 2 Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University,
 3 Richmond, VA, USA, <sup>28</sup>Department of Neurology, Klinikum rechts der Isar, School of
 4 Medicine, Technical University of Munich, Munich, Germany, 29 Division of Mental Health and
 5 Addiction, Oslo University Hospital, Oslo, Norway, 30 Biomedical Network Research Centre on
 6 Mental Health (CIBERSAM), Madrid, Spain, 31 Department of Mental Health, Hospital
 7 Universitari Vall d'Hebron, Barcelona, Spain, 32 Department of Genetics, Microbiology, and
 8 Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain, 33 Psychiatric
 9 Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research
10 Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain, <sup>34</sup>Boston Children's
11 Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA, 35 Department
12 of Pediatrics, Harvard Medical School, Boston, MA, USA, <sup>36</sup>Department of Social and
13 Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA,
14 <sup>37</sup>University College London, London, UK, <sup>38</sup>Division of Psychiatry, University College London,
15 London, UK, <sup>39</sup>Department of Psychiatry, University of Münster, Münster, Germany, <sup>40</sup>The
16 Flore Institute of Neuroscience and Mental Health, Melbourne, Australia, <sup>41</sup>Department of
17 Psychiatry, University of Melbourne, Melbourne, Australia, 42 Department of Psychiatry,
18 Psychosomatic Medicine and Psychotherapy; University Hospital Frankfurt - Goethe
19 University, Frankfurt, Germany, 43 Institute of Epidemiology and Social Medicine, University of
20 Münster, Münster, Germany, 44 Department of Quantitative Health Sciences, Mayo Clinic,
21 Rochester, MN, USA, 45 Department of Psychiatry and Psychology, Mayo Clinic, Rochester,
22 MN, USA, <sup>46</sup>Department of Psychiatry and Behavioral Sciences, Institute for Genomics in
23 Health, State University of New York Downstate Health Sciences University, Brooklyn, NY,
24 USA, <sup>47</sup>Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric
25 Genetics and Genomics, Cardiff, UK, <sup>48</sup>University Medical Center, Division of Neurosciences,
26 Department of Psychiatry, Heidelberglaan, Utrecht, the Netherlands, <sup>49</sup>Social, Genetic and
27 Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience,
28 King's College London, London, UK, <sup>50</sup>Department of Translational Research in Psychiatry,
29 Max Planck Institute of Psychiatry, Munich, Germany, 51 School of Psychology, Faculty of
30 Science, University of New South Wales, Sydney, New South Wales, Australia, 52 Department
31 of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 53 Department
32 of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden, <sup>54</sup>Department of
33 Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 55 Seaver Autism
34 Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY,
35 USA, <sup>56</sup>Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle,
36 New South Wales, Australia, <sup>57</sup>School of Biomedical Sciences and Pharmacy, University of
37 Newcastle, Callaghan, NSW, Australia, 58 Chronic Diseases Research Centre (CEDOC), Lisbon
38 Institute of Global Mental Health, Lisbon, Portugal, 59 Department of Psychiatry and
39 Neuroscience Institute, University of Cape Town, Cape Town, South Africa, 60 INSERM EPI
40 9906, Faculté de Médecine et de Pharmacie, Institut Fédératif de Recherches
41 Multidisciplinaires sur les peptides, Rouen, France, <sup>61</sup>Department of Psychiatry, Monash
42 University, Melbourne, Australia, <sup>62</sup>School of Psychiatry, University of New South Wales,
43 Sydney, New South Wales, Australia, <sup>63</sup>Psychiatric Epidemiology and Psychopathology
44 Research Center, Department of Psychiatry, Lausanne University Hospital and University of
45 Lausanne, Prilly, Switzerland, <sup>64</sup>Université Paris Cité, Institute of Psychiatry and Neuroscience
46 of Paris (INSERM U1266), GHU Paris Psychiatrie et Neurosciences, Paris, France, 65 Institute of
47 Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn,
```

```
1 Germany, 66 Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital,
 2 Assistance Publique-Hôpitaux de Paris-Sorbonne University, Paris, France, <sup>67</sup>CNRS UMR 7222,
 3 Institute for Intelligent Systems and Robotics, Sorbonne University, Paris, France,
 4 <sup>68</sup>Department of Psychiatry, Trinity College Dublin, Dublin, Ireland, <sup>69</sup>Centre for
 5 Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical
 6 Neurosciences, Cardiff University, Cardiff, UK, 70 Department of Psychiatry, University of
 <sup>7</sup> Toronto, Toronto, ON, Canada, <sup>71</sup>Neurosciences & Mental Health, The Hospital for Sick
 8 Children, Toronto, ON, Canada, 72 Department Genes and Environment, Max-Planck-Institute
 9 of Psychiatry, Munich, Germany, 73 Joint Institute for Individualisation in a Changing
10 Environment (JICE), University of Münster and Bielefeld University, Münster, Germany,
11 <sup>74</sup>Institute for Translational Psychiatry, University of Münster, Münster, Germany,
12 75 Department of Psychological Sciences, Kent State University, Kent, OH, USA, 76 Institute of
13 Medical Informatics and Statistics, UKSH University Hospital of Schleswig-Holstein Kiel
14 Campus, Arnold-Heller-Strasse, Kiel, Germany, 77 Institute for Human Genetics, Department
15 of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of
16 California San Francisco, San Francisco, CA, USA, 78 Data Science & Biometrics, Research &
17 Development, Pierre Fabre Group, Toulouse, France, 79 School of Medicine, Division of
18 Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK, 80 Sheppard
19 Pratt Health System, Baltimore, MD, USA, 81 Department of Medical Genetics, Oslo University
20 Hospital and University of Oslo, Oslo, Norway, 82 Centre for Precision Psychiatry, Oslo
21 University Hospital & University of Oslo, Oslo, Norway, 83 Department of Psychiatry and
22 Psychotherapy, University of Freiburg, Freiburg, Germany, 84Cheshire and Wirral Partnership
23 NHS Trust, Ellesmere Port, Cheshire, UK, 85 Department of Psychiatry, Sørlandet hospital,
24 Arendal/Kristiansand, Norway, 86 Department of Psychiatry and Behavioral Sciences, Stanford
25 University, Stanford, CA, USA, 87 Wu Tsai Neurosciences Institute, Stanford University,
26 Stanford, CA, USA, 88 Department of Biochemistry & Molecular Biology, Indiana University,
27 Indianapolis, IN, USA, 89 Department of Medical and Molecular Genetics, Indiana University,
28 Indianapolis, IN, USA, 90 Estonian Genome Centre, Institute of Genomics, University of Tartu,
29 Tartu, Estonia, 91 Departments of Psychiatry and of Neuroscience and Physiology, SUNY
30 Upstate Medical University, Syracuse, New York, NY, USA, 92 Department of Psychological
31 Sciences, Case Western Reserve University, Cleveland, OH, USA, 93 Institute of Medical
32 Genetics and Pathology, University Hospital Basel, Basel, Switzerland, 94Centre for Human
33 Genetics, University of Marburg, Marburg, Germany, 95 Institute of Human Genetics,
34 University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany,
35 96 Department of Biomedicine, University of Basel, Basel, Switzerland, 97 Department of
36 Psychiatry (UPK), University of Basel, Basel, Switzerland, 98 Department of Medical
37 Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University
38 Medical Center, Nijmegen, The Netherlands, <sup>99</sup>Department of Human Genetics, Donders
39 Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen,
40 The Netherlands, <sup>100</sup>Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN,
41 US, <sup>101</sup>Janssen Research and Development, LLC, <sup>102</sup>School of Biomedical Sciences, University
42 of New South Wales, Sydney, New South Wales, Australia, 103 Neuroscience Research
43 Australia, Randwick, New South Wales, Australia, 104FSBSI Institute of Biochemistry and
44 Genetics of the Ufa Federal Research Center of the Russian Academy of Sciences, Russia,
45 105 FSBEI HE Bashkir State Medical University of Health Ministry of Russia, Russia, 106 FSBEI
46 APGE Russian Medical Academy of Continuing Professional Education of the Ministry of
47 Health of Russia, Russia, <sup>107</sup>FSBEI HE Kemerovo State University, Russia, <sup>108</sup>Department of
```

```
1 Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany,
 <sup>2</sup> <sup>109</sup>Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL,
 3 USA, 110 School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,
 4 111 Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical
 5 Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria,
 6 112 Director, Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab),
 7 SUNY Upstate Medical University, 113 Division of Human Genetics, Children's Hospital of
 8 Philadelphia, Philadelphia, PA, USA, 114 Center for Applied Genomics, Children's Hospital of
 9 Philadelphia, Philadelphia, PA, USA, <sup>115</sup>Department of Pediatrics, Perelman School of
10 Medicine, University of Pennsylvania, Philadelphia, PA, USA, 116 Department of Psychiatry and
11 Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
12 117 Psychological Medicine, University of Worcester, Worcester, UK, 118 Discipline of Psychiatry
13 and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of
14 New South Wales, Sydney, New South Wales, Australia, 119 Center on Enhancement of
15 Community Integration for Homeless Veterans, VA Greater Los Angeles Healthcare System,
16 Los Angeles, CA, USA, 120 Semel Institute for Neuroscience and Human Behavior, University of
17 California Los Angeles, Los Angeles, CA, USA, 121 Psychiatric Genetics Research Unit,
18 Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania, 122 Department of
19 Psychiatry, University of Pennsylvania, Philadelphia, PA, USA, 123 Unidad de Gestión Clínica de
20 Salud Mental del Hospital Regional Universitario de Málaga, Instituto de Investigación
21 Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma Bionand, Málaga,
22 Spain, <sup>124</sup>JanK.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine,
23 University of Bergen, Bergen, Norway, <sup>125</sup>Department of Psychiatry and Behavioral Sciences
24 (JKF, PL, BJ, MWM, JH, JY), Stanford University School of Medicine, Stanford, CA, USA, 126VISN
25 21 Mental Illness Research, Education, and Clinical Center (JKF, PL, MWM, JH, JY), Veterans
26 Affairs Palo Alto Health Care System, Palo Alto, CA, USA, 127 Medical Research Council Centre
27 for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical
28 Neurosciences, Cardiff University, Cardiff, UK, <sup>128</sup>Department of Psychiatry and
29 Psychotherapy, Medical University of Vienna, Austria, <sup>129</sup>University of Peshawar, Peshawar,
30 Pakistan, <sup>130</sup>MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine,
31 Edinburgh, UK, <sup>131</sup>Department of Child and Adolescent Psychiatry, Psychotherapy and
32 Psychosomatics, University Hospital Essen (AöR), University of Duisburg-Essen, Essen,
33 Germany, 132 Center for Translational Neuro- and Behavioral Sciences, University Hospital
34 Essen, University of Duisburg-Essen, Essen, Germany, 133 Faculty of Medicine and Health
35 Sciences, Department of Psychiatry, Stellenbosch University, Cape Town, Western Cape, ZA,
36 134 SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town,
37 Western Cape, ZA, 135 Department of Genetic Epidemiology, Institute of Human Genetics,
38 University of Münster, Münster, Germany, 136 Section of Molecular Genetics of Mental
39 Disorders, LVR-University Clinic Essen, Essen, Germany, <sup>137</sup>Institute of Sex and
40 Gender-Sensitive Medicine, University Hospital Essen, University of Duisburg-Essen,
41 Virchowstr, Essen, Germany, <sup>138</sup>Interfaculty Institute for Genetics and Functional Genomics,
42 University Medicine Greifswald, Greifswald, Germany, <sup>139</sup>Institute of Biological Psychiatry,
43 Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark, 140 Charles
44 Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New
45 York, NY, USA, 141 Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo,
46 São Paulo, Brazil, 142 Department of Biochemistry, Universidade Federal de São Paulo, São
47 Paulo, Brazil, 143 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New
```

```
1 York, NY, USA, 144 Department of Genetics and Genomic Sciences, Icahn School of Medicine at
 <sup>2</sup> Mount Sinai, New York, NY, USA, <sup>145</sup>Department of Psychiatry, Fujita Health University School
 3 of Medicine, Toyoake, Aichi, Japan, 146Cardiff University, National Centre for Mental Health,
 4 Cardiff University Centre for Psychiatric Genetics and Genomics, Cardiff, UK, 147 Institute of
 5 Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden,
 6 148 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,
 7 Sweden, <sup>149</sup>McLean Hospital, Belmont, MA, USA, <sup>150</sup>Department of Psychiatry, Harvard
 8 Medical School, Boston, MA, USA, 151 Campbell Family Mental Health Research Institute,
9 Centre for Addiction and Mental Health, Toronto, ON, Canada, <sup>152</sup>The Ohio State University,
10 College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA,
11 153 Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,
12 154 Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany,
13 155 Department of Psychological Medicine and Neurology, MRC Centre for Neuropsychiatric
14 Genetics and Genomics, School of Medicine, Neuroscience and Mental Health Research
15 Institute, Cardiff University, Cardiff, UK, 156 Department of Clinical Science, University of
16 Bergen, Bergen, Norway, 157 Department of Medical Genetics, Haukeland University Hospital,
17 Bergen, Norway, 158 Department of Genetics, Rutgers University, Piscataway, NJ, USA,
18 159 Human Genetics Institute of New Jersey (HGINJ), Rutgers University, Piscataway, NJ, USA,
19 160 Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic
20 Medicine and Psychotherapy, Frankfurt, Germany, <sup>161</sup>Department of Epidemiology, Harvard T.
21 H. Chan School of Public Health, Boston, MA, USA., <sup>162</sup>Brain Dynamics Centre, Westmead
22 Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia,
23 <sup>163</sup>Childhood Genetic Disease Laboratory, INSERM UMR S933, Trousseau University Hospital,
24 Paris, France, <sup>164</sup>McLean Hospital, Center of Excellence in Depression and Anxiety Disorders,
25 Belmont, MA, USA, <sup>165</sup>Department of Medical and Molecular Genetics, Faculty of Life
26 Sciences and Medicine, King's College London, London, UK, <sup>166</sup>Department of Psychiatry and
27 Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA,
28 167 Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles,
29 Los Angeles, CA, USA, <sup>168</sup>College of Pharmacy, University of Manitoba, Winnipeg, MB,
30 Canada, 169 New York University, Grossman School of Medicine, New York City, NY, USA,
31 170 Brain and Mental Health Program, QIMR Berghofer Institute of Medical Research,
32 Brisbane, Australia, <sup>171</sup>Division of Psychiatry, Centre for Clinical Brain Sciences, The University
33 of Edinburgh, Edinburgh, UK, <sup>172</sup>Department of Psychology, Harvard University, Boston, MA,
34 USA, <sup>173</sup>Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill,
35 NC, USA, <sup>174</sup>Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill,
36 NC, USA, <sup>175</sup>School of Psychology, The University of Queensland, Brisbane, Queensland,
37 Australia, <sup>176</sup>School of Psychology and Counselling, Queensland University of Technology,
38 Brisbane, Queensland, Australia, 177 Mental Health and Neuroscience, QIMR Berghofer
39 Medical Research Institute, Brisbane, Queensland, Australia, <sup>178</sup>Department of Psychiatry
40 and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim,
41 Heidelberg University, Mannheim, Germany, <sup>179</sup>Department of Psychiatry, Faculty of
42 Medicine, Medical University of Sofia, University Hospital Alexandrovska, Bulgaria,
43 <sup>180</sup>Department of Nursing, Faculty of Health Sciences, University of Granada, Granada,
44 Spain., <sup>181</sup>Institute of Neurosciences 'Federico Olóriz', Biomedical Research Centre (CIBM),
45 University of Granada, and Instituto de Investigación Biosanitaria, Ibs Granada, Granada,
46 Spain., <sup>182</sup>Queensland Centre for Schizophrenia Research, Wolston Park Hospital, Wacol,
47 Queensland, Australia, 183 Department of Psychiatry, University of Queensland, Brisbane,
```

```
<sup>1</sup> Australia, <sup>184</sup>HMNC Holding GmbH, Munich, Germany, <sup>185</sup>Max Planck Institute of Psychiatry,
 <sup>2</sup> Munich, Germany, <sup>186</sup>Department of Psychosis Studies, Institute of Psychiatry, Psychology
 3 and Neuroscience, King's College London, UK, 187 Departments of Psychiatry & Medical and
 4 Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 188 Stark
 5 Neurosciences Research Institute, 189 Department of Psychiatry and Biobehavioral Science
 6 and Department of Human Genetics, David Geffen School of Medicine, University of
 <sup>7</sup> California Los Angeles, Los Angeles, CA, USA, <sup>190</sup>Department of Psychology, Northern Illinois
 8 University, DeKalb, IL, USA, <sup>191</sup>Centre for Neuropsychiatric Genetics and Genomics, Division
 9 of Psychiatry and Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy
10 Road, Cardiff, CF24 4HQ, <sup>192</sup>Analytic and Translational Genetics Unit, Department of
11 Medicine, Department of Neurology, and Department of Psychiatry, Massachusetts General
12 Hospital, Boston, MA, USA, 193The Stanley Center for Psychiatric Research and Program in
13 Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA,
14 USA, <sup>194</sup>Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science,
15 University of Helsinki, Helsinki, Finland, <sup>195</sup>Department of Psychiatry, Rutgers University,
16 Piscataway, NJ, USA, <sup>196</sup>Department of Psychiatric Genetics, Poznan University of Medical
17 Sciences, Poznan, Poland, <sup>197</sup>Psychiatric and Neurodevelopmental Genetics Unit, Department
18 of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard
19 Medical School, Boston, MA, USA, 198King's College London, London, UK, 199Oxford NHS
20 Foundation Trust, Oxford, UK, <sup>200</sup>Department of Psychiatry, Psychosomatic Medicine and
21 Psychotherapy, University Hospital Frankfurt - Goethe University, Frankfurt am Main,
22 Germany, <sup>201</sup>Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta,
23 GA, USA, <sup>202</sup>Division of Depression and Anxiety, McLean Hospital, Belmont, MA, US,
24 203 Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health,
25 Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, <sup>204</sup>Department of
26 Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada,
27 Spain, <sup>205</sup>Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA,
28 <sup>206</sup>Department of Psychiatry and Behavioral Neuroscience, University of Chicago, <sup>207</sup>German
29 Center for Mental Health (DZPG), Munich, Germany, <sup>208</sup>Department of Psychiatry, University
30 Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany, 209 Institute of Psychiatric
31 Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany,
32 <sup>210</sup>Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich,
33 Munich, Germany, <sup>211</sup>Department of Biostatistics and Center for Statistical Genetics, School
34 of Public Health, University of Michigan, Ann Arbor, MI, USA, 212 SAMRC Extramural Genomics
35 of Brain Disorders Research Unit, Stellenbosch University, Cape Town, Western Cape, ZA,
36 213 SAMRC Unit on the Genomics of Brain Disorders, Faculty of Medicine and Health Sciences,
37 Department of Psychiatry, Stellenbosch University, Cape Town, Western Cape, ZA, <sup>214</sup>Division
38 of Cancer Epidemiology and Genetics National Cancer Institute, Rockville, MD, USA, <sup>215</sup>Icahn
39 School of Medicine at Mount Sinai, New York, NY, USA, <sup>216</sup>Net.bio Inc, Los Angeles, CA, USA,
40 <sup>217</sup>Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine,
41 Massachusetts General Hospital, Boston, MA, USA, <sup>218</sup>Center for Precision Psychiatry,
42 Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA, <sup>219</sup>Department
43 of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience,
44 King's College London, London, UK, <sup>220</sup>Department of Mental Health, University of Aberdeen,
45 Royal Cornhill Hospital, Aberdeen, UK., <sup>221</sup>Division of Mental Health and Substance abuse,
46 Diakonhjemmet Hospital, Oslo, Norway, <sup>222</sup>SAMRC Unit on Risk and Resilience in Mental
47 Disorders, Dept of Psychiatry and Neuroscience Institute, University of Cape Town, Cape
```

```
1 Town, South Africa, <sup>223</sup>School of Public Health, University of California San Diego, La Jolla, CA,
 2 USA, <sup>224</sup>Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA,
 3 USA, 225German Center for Mental Health (DZPG), Partner Site Mannheim - Heidelberg - Ulm,
 4 Germany, <sup>226</sup>Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of
 5 Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,
 6 <sup>227</sup>Cochin University Hospital, Paris Cité University, Paris, France, <sup>228</sup>INSERM Unit 894,
 7 Institute of Psychiatry And Neuroscience of Paris, Paris, France, <sup>229</sup>Institute for Health
 8 Informatics, University College London, London, UK, <sup>230</sup>SBI MD Central Clinical Psychiatric
 9 Hospital F. Usoltseva, <sup>231</sup>FSBEI HE "Russian University of Medicine" of the Ministry of Health
10 of Russia, Russia, <sup>232</sup>Neuroscience Research Australia, Sydney, New South Wales, Australia,
11 233 School of Biomedical Sciences, Faculty of Medicine and Health, University of New South
12 Wales, Sydney, New South Wales, Australia, 234School of Public Health and Department of
13 Epidemiology, Louisiana State University Health Sciences Center, New Orleans, LA, US,
14 <sup>235</sup>Cheshire and Wirral Partnership NHS Foundation Trust, Winsford, Cheshire, UK,
15 <sup>236</sup>Genomics Program, University of South Florida College of Public Health, Tampa, FL, USA,
16 237 Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA,
17 238 Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany,
18 <sup>239</sup>New York State Psychiatric Institute, New York, NY, USA, <sup>240</sup>Department of Psychiatry,
19 Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA,
<sup>20</sup> <sup>241</sup>Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital,
21 Copenhagen, Denmark, <sup>242</sup>Universidade Nova de Lisboa, Nova Medical School, Lisboa,
22 Portugal, <sup>243</sup>Stanley Division of Developmental Neurovirology, Johns Hopkins School of
23 Medicine, Baltimore, MD, USA, 244 University of the Sunshine Coast, The Chancellory, Sippy
24 Downs, Queensland, Australia, <sup>245</sup>Queensland University of Technology, School of Clinical
25 Sciences, Kelvin Grove, Queensland, Australia, <sup>246</sup>Department of Biomedicine, University of
26 Bergen, Bergen, Norway, 247 Stanley Center for Psychiatric Research, Broad Institute of MIT,
27 and Harvard, Cambridge, MA, USA, <sup>248</sup>Analytic and Translational Genetics Unit, Department
28 of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA,
29 USA, <sup>249</sup>Department of Psychology, University of Washington, Seattle, WA, USA,
30 250 Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics,
31 Virginia Commonwealth University, Richmond, VA, USA, <sup>251</sup>Department of Psychiatry,
32 University of Oxford, Warneford Hospital, Oxford, UK, <sup>252</sup>Institute for Molecular Bioscience,
33 The University of Queensland, St Lucia, Queensland, Australia, 253 Departments of Genetics
34 and Psychiatry, University of North Carolina, Chapel Hill, NC, USA, <sup>254</sup>Institute for Genomic
35 Medicine, University of California San Diego, La Jolla, CA, USA, 255 Department of Medicine,
36 Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA,
37 <sup>256</sup>Research/Psychiatry, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA,
38 <sup>257</sup>Department of Pediatrics, Université de Montréal, Montreal, QC, Canada, <sup>258</sup>McLaughlin
39 Centre, University of Toronto, Toronto, ON, Canada, <sup>259</sup>Beyster Center for Psychiatric
40 Genomics, University of California San Diego, La Jolla, CA, USA, 260 Department of Cellular and
41 Molecular Medicine, University of California San Diego, La Jolla, CA, USA
```

42 *Correspondence at jsebat@ucsd.edu, stephen.scherer@sickkids.ca

1 Abstract

2 Psychiatric conditions share common genes, but mechanisms that differentiate diagnoses 3 remain unclear. We present a multidimensional framework for functional analysis of rare 4 copy number variants (CNVs) across 6 diagnostic categories, including schizophrenia (SCZ), 5 autism (ASD), bipolar disorder (BD), depression (MDD), PTSD, and ADHD (N = 574,965). 6 Using gene-set burden analysis (GSBA), we tested duplication (DUP) and deletion (DEL) 7 burden across 2,645 functional gene sets defined by the intersections of pathways, cell 8 types, and cortical regions. While diagnoses converge on shared pathways, mixed-effects 9 modeling revealed divergence of pathway effects by cell type, brain region, and gene 10 dosage. Factor analysis identified latent dimensions aligned with clinical axes. A primary 11 factor (F1) captured reciprocal dose-dependent effects of DUP and DEL in SCZ reflecting 12 positive and negative effects in excitatory versus inhibitory neurons and association versus 13 sensory cortex. SCZ and ASD were both strongly aligned with F1 but with opposing 14 directionalities. Orthogonal factors highlighted neuronal versus non-neuronal effects in 15 mood disorders (F2) and differential spatial distributions of DEL effects in ADHD and MDD 16 (F3). High-impact CNVs at 16p11.2 and 22q11.2 were enriched for combinations of 17 cell-type-specific genes involved in pathways consistent with our broader findings. These 18 results reveal molecular and cellular mechanisms that are broadly shared across psychiatric 19 traits but differ between diagnostic categories in context and directionality. 20

21 Background

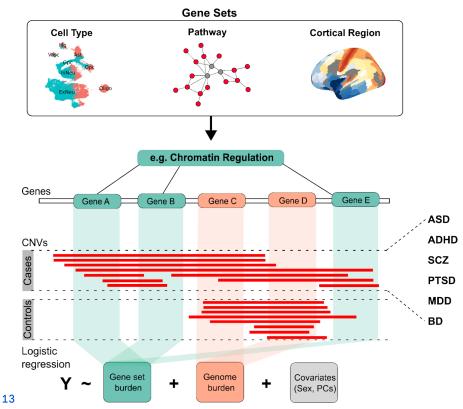
22 Genes that are associated with psychiatric conditions carry rich information about the 23 timing, location, and nature of the biological processes that contribute to psychopathology 24 1,2. The molecular functions of genes point to the cellular pathways and regulatory networks 25 that underlie vulnerability to psychiatric disorders. Furthermore, because gene expression is 26 tightly regulated in a cell-type and region-specific manner across the brain, the discovery of 27 genes can also provide insight into the neuroanatomical circuits that influence psychiatric 28 traits. The discovery of hundreds of genes and copy number variations (CNVs) that underlie 29 major psychiatric conditions such as schizophrenia (SCZ)³⁻⁶ and autism spectrum disorder 30 (ASD)⁷⁻¹¹ has implicated a variety of pathways including synaptic function, chromatin 31 regulation, cell signaling, cytoskeletal proteins, and DNA and RNA binding proteins that 32 regulate neurodevelopment ^{3,12–18}. Similar pathways have been implicated by transcriptome 33 characterization of post-mortem brains from case samples of idiopathic ASD, SCZ and bipolar 34 disorder (BD) ^{19–23}. Genes implicated in psychiatric diagnoses are also enriched in specific 35 neural cell types. RNA sequencing in postmortem samples have identified neuronal and glial 36 signatures associated with ASD ^{24,25} and differences in the distributions of glial and neuronal 37 cells in mood disorders ²⁶. Analysis of GWAS associations has found enrichment of SCZ ²⁷. 38 major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) ²⁸ associations in 39 mature excitatory and inhibitory neurons.

- 1 Despite significant progress in identifying risk genes and pathways in psychiatric conditions,
- 2 there remains a limited understanding of how neural processes relate to specific psychiatric
- 3 traits or diagnoses. Many of the same biological pathways, such as those described above,
- 4 have been repeatedly associated with multiple diagnostic categories, including SCZ^{5,15,29},
- ⁵ BD^{14,30}, ASD¹⁶, intellectual disability ³¹ and congenital heart disease ³². Thus, functional
- 6 convergence that is evident from pathway enrichment analysis of the associated genes
- 7 highlights broad biological themes but lacks the resolution to differentiate neural
- 8 mechanisms that differ between diagnostic categories.
- 9 CNVs have been shown to exert dose-dependent effects on a range of complex traits,
- 10 including gene expression³³, head size ^{4,34}, brain volume ^{35,36}, functional connectivity³⁷, body
- 11 mass ³⁸, craniofacial morphology³⁹. As described in our companion paper ⁴⁰, this pattern
- 12 extends to psychiatric traits, where reciprocal duplications (DUPs) and deletions (DELs) of
- 13 genes show dose-dependent effects and diverge in their genotype-phenotype associations.
- 14 A more detailed functional analysis of gene-dosage effects could clarify how alterations in
- 15 molecular pathways contribute to psychiatric traits. In this study, we developed and applied
- 16 an integrated framework to examine how gene-dosage effects on pathways, cell types, and
- 17 brain regions relate to clinical diagnoses (Fig. 1). Key elements of this approach include
- 18 accounting for (1) directionality of gene-dosage effects and their distribution within (2)
- 19 neural cell-types and (3) cortical brain regions, and we perform a comparative analysis
- 20 across multiple diagnostic categories.

21 Gene set association of rare CNVs in 6 psychiatric conditions

- 22 We leveraged large-scale rare CNV data (population frequency <2%) from the Psychiatric
- 23 Genomics Consortium, comprising genome-wide microarray data from 574,965 individuals
- 24 (133,007 cases and 441,958 controls) across six major psychiatric disorders: schizophrenia
- 25 (SCZ), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder
- 26 (MDD), post-traumatic stress disorder (PTSD), and attention-deficit/hyperactivity disorder
- 27 (ADHD). CNVs were uniformly processed through a centralized pipeline for calling and
- 28 quality control. Only rare CNVs (frequency <2%) were retained for analysis. Individuals
- 29 represented diverse ancestral backgrounds, with 89.3% of European ancestry. This dataset
- 30 enabled us to apply our multidimensional framework to identify distinct molecular and
- 31 cellular features of brain function associated with each psychiatric diagnosis.
- 32 We assembled a primary catalogue of 2,645 gene sets that capture neurobiological features
- 33 across multiple levels of organization. These included 2,453 molecular pathways from public
- 34 databases 41-43. In addition, differential expression in single-cell expression data was analyzed
- 35 to create gene sets for 12 cell types from human fetal and adult brain (ranging from second
- 36 trimester to 54 years of age) 44, and differential expression in bulk tissue was analyzed to
- 37 create 180 anatomic regions of cerebral cortex from the Allen Human Brain Atlas (AHBA) 45
- 38 46(Table S1).

- 1 We investigated the association of functional gene sets with psychiatric diagnoses using
- 2 gene-set burden analysis (GSBA) 5. Associations detected by GSBA capture the enrichment
- 3 of variants in functionally-related genes in cases. However, GSBA is not equivalent to a
- 4 gene-set enrichment test (e.g., Subramanian et al., 2005 ⁴⁷). Rather, it is a statistical genetics
- 5 approach that quantifies the effect size of rare-variant burden across a defined set of genes
- 6 (e.g. a GO term) in cases and controls (Fig. 1). For each gene set, we tested the association
- 7 of the aggregate DEL or DUP counts across genes with case-control status by logistic
- 8 regression controlling for population structure, sex and overall genome-wide CNV burden
- 9 (collapsed across all out-of-category genes). Gene-set summary statistics were generated for
- 10 each genotyping platform in each diagnostic category, and results were combined by
- 11 meta-analysis. Combined results were corrected for multiple testing with
- 12 Benjamini-Hochberg False Discovery Rate (BH-FDR<5%, Fig. S1).



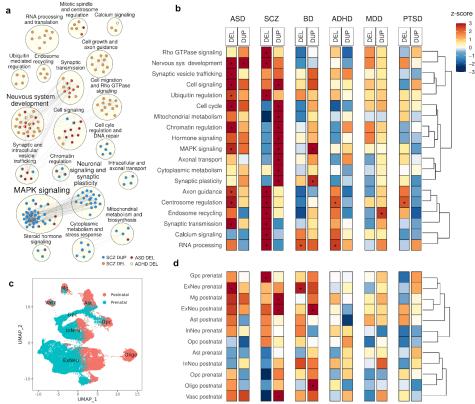
14 Fig. 1 | Investigating association of pathways, cell types and brain regions by Gene Set Burden Analysis
15 (GSBA). Gene sets were derived for Pathway (from GO, KEGG, REACTOME, and BioCarta), Cell type (from single
16 cell study, Velmeshev et al.), and Cortical regions (from Glasser parcellation of the Allen Brain Atlas).
17 Case-control association of CNV burden collapsed across gene sets, was then tested by logistic regression and
18 meta-analysis was performed across genotyping platforms. Functional gene set associations were tested for 6
19 major psychiatric conditions (ASD, ADHD, SCZ, PTSD, MDD, BD).

20 Significant functional burden associations were detected for a total of 787 gene sets in one 21 or more conditions, including SCZ (671 gene sets) and ASD (331 gene sets), ADHD (52 gene 22 sets), BD (122 gene sets) and MDD (3 gene sets) (**Table S2**). Comparing summary statistics 23 between trans-ancestry analysis and the European-only subset, we found a high level of 24 concordance in the z-statistics between single ancestry (European subset) and

- 1 trans-ancestry results across the 6 psychiatric conditions (beta-coefficients are between 0.9
- 2 and 1 with median beta-coefficient = 0.97; Fig. S2). All results described below are from the
- 3 trans-ancestry summary statistics, which has the greatest statistical power.

4 Common neurodevelopmental pathways are implicated in multiple diagnostic categories

- 5 Pathway gene sets were compiled from Gene Ontology (GO) 41, KEGG 42, Reactome 43, and
- 6 BioCarta 48, with size ranging from 50 to 500 genes. 589 gene sets were associated with one
- 7 or more conditions (**Table S3**). Using Enrichment Map ⁴⁹, overlapping gene sets implicated by
- 8 CNVs were grouped into 19 functionally-related clusters representing canonical pathways
- 9 such as MAPK signaling, nervous system development, synaptic transmission, chromatin
- 10 regulation, etc. (Fig. 2a, Table S4). To summarize the pathway results, effect sizes were then
- 11 estimated for the 19 gene sets in 6 diagnostic categories by GSBA regression (**Fig. 2b, Table** 12 **S5**)

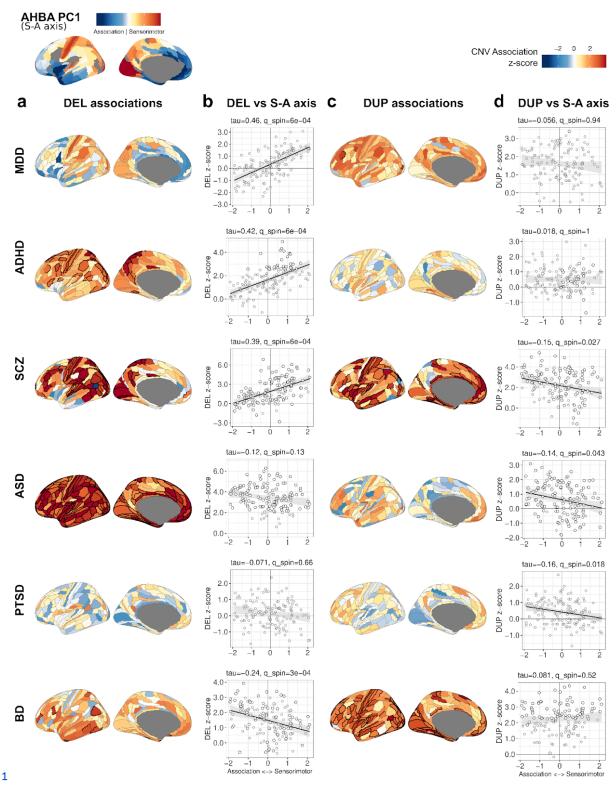


15 Fig. 2| Rare CNVs association analysis results in molecular pathways and neuronal cell types. (a) Enrichment map showing 16 clusters of functional modules that are significantly associated with any condition. CNV associations are color-coded as a 17 portion with a node where red indicates a DEL association in ASD, orange indicates a DEL association in SCZ, blue indicates 18 a DUP association in SCZ, and yellow indicates a DEL association in ADHD. Gene-sets not forming a cluster of 3 or more 19 members were excluded. Gene set clusters are listed in Table S4. (b) The heatmap represents the results at the 20 pathway-cluster level, with color indicating z-score from meta-analysis. (c) A UMAP plot displays cell clusters colored 21 by prenatal (teal) and postnatal (red) periods. (d) Heatmaps show association results at the cell type level with 22 color indicating z-score, where red represents a higher burden of CNVs in cases and blue represents a depletion 23 of CNVs burden in cases. An asterisk indicates statistically significant associations (q-value <0.1). Summary 24 statistics of the initial primary gene sets and for the final set of pathway clusters are in Tables S3, and S5 respectively.

```
1
 2 As expected, CNV burden associations were strongest in ASD and SCZ and were attenuated
 3 in other adult onset diagnoses, BD, ADHD, MDD, and PTSD. Many of the same functional
 4 gene sets were implicated in ASD and SCZ, including MAPK and other cell-signaling
 5 pathways, chromatin regulation, and synaptic transmission. Pathway signals in ASD were
 6 driven by significant DEL associations across 10 pathways. SCZ, by contrast, showed DUP
 7 associations in 9 functional gene sets such as chromatin regulation, MAPK signaling, axonal
 8 transport, and DEL associations in a different set of 9 pathways including synaptic
9 transmission, axon guidance, and calcium signaling. The finding that pathway associations in
10 SCZ differ by gene dosage is notable in light of the dose-dependent CNV effects reported for
11 SCZ and other diagnoses in our companion study 40.
13 Gene set burden associations implicate neuronal and non-neuronal cell types
14 Twelve cell-type gene sets were derived from single-cell RNA-sequencing of human cortex
15 (prefrontal, cingulate, insula, motor, and temporal regions) spanning prenatal (5-9 months)
16 and postnatal (0-54 years of age) developmental stages, based on the dataset from
17 Velmeshev et al. 44. Starting from eight major cell type clusters defined in the original study,
18 we refined these to capture key developmental distinctions, resulting in the following gene
19 sets: five prenatal cell types - 1) glial progenitor cells (GpcPre), 2) oligodendrocyte precursor
20 cells (OpcPre), 3) inhibitory neurons (InNeuPre), 4) excitatory neurons (ExNeuPre), and 5)
21 astrocytes (AstPre); and seven postnatal cell types - 6) vascular cells (VascPost), 7) OpcPost,
22 8) oligodendrocytes (OligoPost), 9) microglia (MgPost), 10) inhibitory neurons (InNeuPost),
23 11) excitatory neurons (ExNeuPost), and 12) astrocytes (AstPost) (Fig. 2c). We observed
24 several cell type associations with diagnostic categories (Fig. 2d, Table S3). ASD was
25 associated with DEL burden in ExNeuPre, consistent with loss-of-function variants in ASD
26 genes being enriched in fetal excitatory neurons <sup>7,50</sup>. SCZ showed DUP association in
27 ExNeuPre, microglia, and neurovascular cells and DEL association in GpcPre. BD showed DUP
28 association in ExNeuPost and OligoPost and DEL association in ExNeuPre.
30 Diagnoses differ in the distribution of gene-set associations between sensorimotor and
31 association cortex
32 Spatial variation in gene expression across the cortex reflects region-specific regulation
33 beyond differences in cell type composition 51. The primary gradient of gene expression
34 (PC1) in the AHBA follows a sensorimotor-to-association (S-A) axis, spanning from primary
35 sensory (visual, auditory, sensorimotor cortex) areas to transmodal (frontal, temporal)
36 regions 51-53. This axis aligns with several cortical hierarchies, including developmental timing
37 <sup>54–56</sup>, myelination <sup>54,55</sup>, anatomical projections <sup>57</sup>, and functional specialization <sup>58</sup>. Given its
38 close correspondence with the S-A axis <sup>51</sup>, we refer to AHBA PC1 as the S-A axis throughout
39 the paper.
```

41 To investigate how gene dosage effects are distributed across the cortex, we defined gene

```
1 sets for each of the 180 cortical regions from Glasser et al. 45. Gene expression was
 2 z-transformed across regions, and highly expressed genes (z>1) were assigned to each set of
 3 180 regions. DEL and DUP burden was tested across cortical gene sets within each diagnosis.
 4 In total, 177 significant associations were identified. DEL and DUP associations are visualized
 5 on Glasser cortical maps (Fig. 3a, c), with effect sizes (z-scores) represented by a red-blue
 6 scale. We then tested whether spatial patterns of effect sizes aligned with the S-A axis using
 7 the SPIN test <sup>59</sup> with 10,000 permutations and Kendall correlation.
9 CNV effect sizes varied across the cortex, and in several diagnostic categories, they showed
10 significant, but divergent, correlations with the S-A axis. DEL effect sizes were positively
11 correlated with the S-A axis in MDD, ADHD, and SCZ, indicating enrichment of DEL signal in
12 sensorimotor cortex, while BD showed a negative correlation, indicating a relative
13 enrichment of DEL signal in association cortex (Fig. 3b; Table S3). DUP associations were
14 negatively correlated with the S-A axis in SCZ, ASD, and PTSD (Fig. 3c,d), indicating an
15 enrichment in the association cortex. Our results suggest that the spatial distribution of gene
16 dosage effects differs by diagnosis. Similar correlations were observed with other functional
17 and anatomical gradients that are also aligned with the S-A axis (e.g., T1w/T2w ratio
18 reflecting myelin content; Fig. S3) 52.
19
```

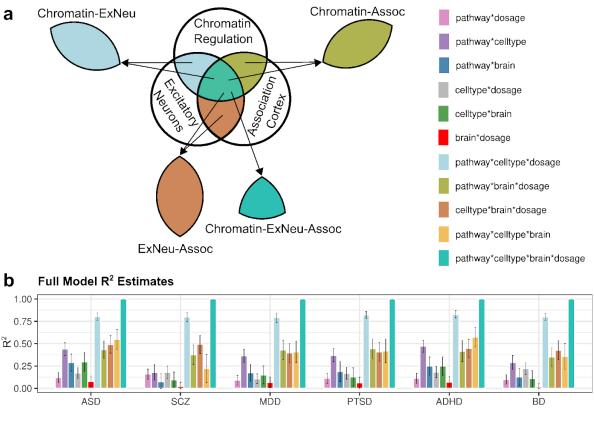


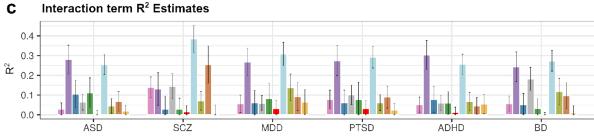
2 Fig. 3 | Rare (**a**) DEL and (**c**) DUP association analysis results of the cortical brain regions in the 6 conditions. **3** Color indicates the association level (z-score) with red indicating the CNV association with the cases, while blue **4** indicates the depletion of CNVs in cases (**Table S3**). Correlation results between CNV associations in (**b**) DEL and **5** (**d**) DUP against the dominant transcriptomic brain gradient (PC1 of AHBA). Each circle represents a brain **6** region gene set. Kendall's Tau and corresponding q-value are shown in the title of each scatterplot. Solid **7** diagonal trend line indicates significant correlation (q_{SPIN} <0.05). The cortical map at the top left corner **8** illustrates the transcriptomic gradient from PC1 AHBA.

```
1 Association of pathways with diagnosis varies by cell type and gene dosage
 2 Our initial findings demonstrate that there are divergent genetic influences between
 3 different diagnostic categories when we stratify genetic effects by gene dosage and brain
 4 region. These findings highlight a principle that is somewhat obvious in retrospect. The
 5 multidimensional nature of psychopathology demands a multidimensional data analytic
 6 approach.
 7
 8 To characterize with more granularity how CNV effects are distributed in the brain, we
9 investigated gene-dosage effects at the intersections of pathways, cell types, and brain
10 regions. Pathway gene sets were intersected with cell types to create non-overlapping
11 subsets (e.g., Chromatin ExNeu and Chromatin InNeu; Fig. 4a). Similarly, the transcriptome
12 was divided into sensorimotor and association gene sets based on the correlations of
13 individual genes with the S-A axis in the AHBA (76.29% of genes showed a nominally
14 significant positive or negative correlation with PC1, Tables S6-S7). Pathways were
15 intersected with these to create 2 region-specific subsets of each pathway (e.g.,
16 Chromatin Sensori, Chromatin Assoc). GSBA was then performed on two-way and
17 three-way intersections of pathways (N = 19), cell types (N = 12), and brain regions (N = 2),
18 including gene sets of size \geq30. Each gene set result was labeled with four factors: pathway,
19 cell type, brain region, and dosage (Table S8).
21 We then evaluated which levels of biological organization best explain variation in gene-set
22 effects within each diagnosis. We performed linear modeling on effect sizes of stratified
23 gene-sets (z-scores) with different combinations of pathway, cell type, brain, and dosage as
24 independent variables. For each diagnostic category, variance explained (R2) in summary
25 statistics was calculated for main effects and interactions of these factors. Of all 2-way
26 combinations, pathway and cell type explained the greatest variance (35.3% on average
27 across diagnoses, Fig. 4b; Table S9). A full model that further stratified gene sets by dosage
28 explained a majority of the variance (80.1% on average). The pathway×celltype×dosage
29 interaction consistently explained the largest proportion of variance (Fig. 4c; Table S9),
30 explaining half of the effect of the full model. This result highlights the importance of
31 cell-type-specific and dose-dependent pathway effects across psychiatric conditions. Model
```

32 fits improved by 7-20% when the brain region was included in the models (**Fig. 4b,c**; **Tables** 33 **S9-S10**), suggesting that spatial variation in pathway expression also explains a proportion of

34 variance.





2 Fig. 4| Associations of pathways with psychiatric traits vary by cell-type and gene dosage. (a) Schematic illustrating how 3 gene sets were defined by intersecting pathway, cell type, and cortical region dimensions. Example intersections include 4 Chromatin-ExNeu, Chromatin-Assoc, ExNeu-Assoc, and Chromatin-ExNeu-Assoc. (b) Full model R² estimates showing the 5 total variance in gene-set z-scores explained by main effects and interaction terms for each diagnosis. Models included 6 pathway, cell type, brain region, dosage, and all combinations of two-way and three-way interactions. (c) R² estimates for 7 individual interaction terms, quantifying the contribution of each interaction to the explained variance. The 8 pathway×celltype×dosage interaction consistently explains the largest proportion of variance across diagnoses, highlighting 9 the importance of dosage-sensitive and cell-type-specific pathway effects (Tables S9-S10).

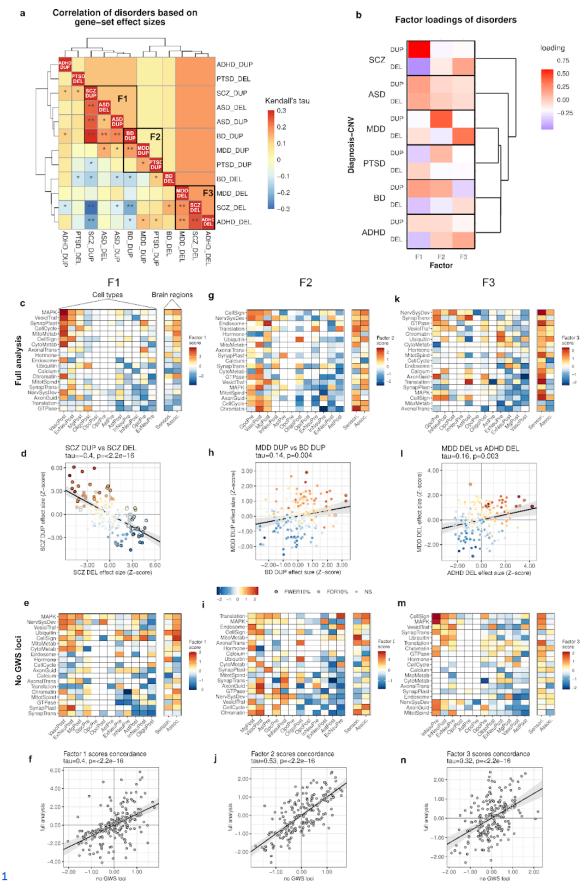
11 Diagnostic categories are differentiated based on gene-dosage effects in pathways by cell

12 type and brain region

1

- 13 To elucidate where gene-dosage effects converge at the intersection of pathways, cell types,
- 14 brain regions, and psychiatric traits, we performed exploratory factor analysis (EFA) 60 of
- 15 functional gene sets to identify latent factors that correspond to different gene-trait
- 16 relationships. Genetic correlations of DEL and DUP associations across 6 diagnostic
- 17 categories were estimated based on gene-set summary statistics (Fig. 5a; Table S11). Factor
- 18 analysis of gene-set summary statistics was performed to extract latent dimensions of
- 19 genetic effects, and a three-factor model was optimal (Fig. S4). Factor F1 captured

- 1 dose-dependent effects in SCZ and BD (DUP positive, DEL negative) and dose-aligned effects
- 2 in ASD (DUP positive, DEL positive) in shared gene sets. F2 captured DUP effects shared by
- 3 mood disorders and PTSD. F3 captured DEL effects shared by MDD, ADHD and SCZ.
- 4 Importantly, genetic correlations between diagnostic categories show greater contrast when
- 5 DEL and DUP results for each disorder were treated as independent components (Table S11)
- 6 compared to when all gene set tests for DEL and DUP were aligned between disorders (Fig.
- 7 S5g; Table S12). This result is consistent with diagnostic categories having involvement of
- 8 common functional processes with sometimes opposing directionality. Loadings of DEL and
- 9 DUP effects onto the 3 factors yields a unique profile for each diagnostic category (Fig. 5b;
- 10 Table S13).

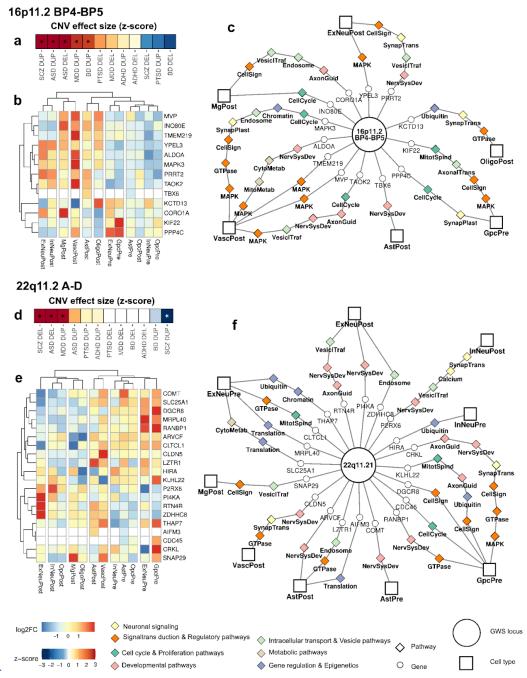


2 Fig. 5 | Differentiation of diagnostic categories based on gene-dosage effects in pathways by cell type and
 3 brain region. (a) Genetic correlations between diagnostic categories when each diagnosis-dosage combination

```
1 is treated as an independent component, see also Table S11, *p<0.05) **q<0.05). Diagnosis-dosages with
 2 factor loadings >0.25 were grouped and labeled to highlight psychiatric traits contributing to F1, F2 and F3. (b):
 3 Factor loadings of DEL and DUP for disorders reveal a distinct profile for each diagnostic category. (c, a, k) Gene
 4 set-factor scores for the three factors, cell types and pathways were ordered using a simple sign-based
 5 bi-clustering algorithm (see methods) (Table S14). (d,h,i) Factor scores are representative of dose-dependent
 6 effects of genes. Scatterplots of gene set effect sizes (z-score) are shown for the top 2 diagnosis-dosage
 7 groupings with highest absolute factor loadings for factor F1, F2, and F3, and factor score of each gene set is
 8 indicated using the same color scale as in panels c,q,k. Solid trend lines indicate significant correlation between
9 the diagnosis-dosage pair. (e,j,m) Factor analysis of gene sets with genome-wide significant loci removed
10 yielded results with highly concordant gene set factor scores (e,f,i,j,m,n; tau F1=0.45, tau F2=0.53,
11 tau F3=0.32, p<2.2e-16; Table S14), demonstrating that these patterns are not attributable to a select subset
12 of major loci.
13
14 The factor scores of functional gene sets show the relationships of neural processes to these
15 latent dimensions. After a sign-based bi-clustering of the matrix, a structured pattern shows
16 dose-dependent effects on pathways within cell types. F1 in particular captures distinct
17 clusters that represent the mirror-opposite effects of DUP and DEL seen in SCZ and other
18 diagnostic categories (Fig. 5b). Positively scoring gene sets (Fig. 5c, upper left quadrant),
19 which correspond to DUP associations in SCZ (Fig. 5d), were enriched for core regulatory
20 processes (cell cycle, MAPK, chromatin) and metabolic pathways expressed in postnatal
21 neurovascular cells (VascPost), excitatory neurons (ExNeuPost), and microglia (MgPost) (Fig.
22 S6). Negatively scoring gene sets (Fig. 5c, lower right quadrant), which reflect DEL
23 associations in SCZ (Fig. 5d), were enriched for calcium signaling, axon guidance, and
24 translation pathways expressed in inhibitory neurons and glia. F1 Factor scores also reveal
25 divergent effects on synaptic transmission by cell type, with DUP associations concentrated
26 in excitatory neurons and DEL associations in inhibitory neurons, a pattern that is consistent
27 with a shift in excitatory-inhibitory balance. To assess whether these patterns might be
28 attributable to strong signals from a select subset of loci, we repeated GSBA (Table S8) and
29 factor analysis (Fig. 5e) after removing 18 loci that reached genome-wide significance (GWS)
30 in our companion study 40. The results showed highly concordant genetic correlations (Fig.
31 S5c), factor solution and factor loadings (Fig. S5f), and gene-set factor scores (Fig. 5f,i,l).
32 Thus the three factors derived in Figure 5 are not driven by a select subset of loci, and
33 appear to be generalizable to CNVs genome wide. Similar clusters of pathway-cell type
34 associations were evident in F1 (Fig. 5e), with the exception of the glial precursor cell type
35 (GpcPre)(Fig. 2d). Lastly, F1 showed modest enrichment of gene set factor scores in
36 Association cortex, a result that is consistent with the inverse dose-response of DEL (Fig.
37 3b) and DUP (Fig. 3d) effects along the S-A axis. Supplementary figures are provided that
38 illustrate all gene-set associations (Fig S6A), the subsets that are captured by each of the
39 latent factors (Fig. S6B), and functional terms that are enriched within each factor (Fig. S6C).
40
41 The orthogonal F2 factor showed divergent positive (associated with cases) and negative
42 (associated with controls) effects in developmental signaling (cell-cycle, MAPK, GTPase
43 signaling) pathways in non-neuronal and neuronal cell types, respectively (Fig. 5g,i).
```

```
1 Positively-scoring gene sets, which correspond to positive DUP associations in mood
 2 disorders (Fig. 5h, Fig. S6b), include nervous system development and metabolic pathways
 3 concentrated in microglia (MgPost), and neurovascular cells (VascPost). Negatively-scoring
 4 gene sets correspond to negative DUP associations in similar pathways in neuroectodermal
 5 lineages (ExNeuPre, ExNeuPost, InNeuPre, AstPost; Fig. 5f,g). The patterns in F2 suggest that
 6 DUP effects in mood disorders are concentrated in core regulatory processes in
 7 non-neuronal cell types, while DUP effects in core regulatory pathways may be tolerated (or
 8 protective) in neurons with respect to diagnoses of MDD and BD. Thus, DUP effects on
9 regulatory pathways in postnatal excitatory neurons (e.g. GTPase ExNeuPost,
10 CellCycle ExNeuPost, Chromatin ExNeupost) are a point of divergence between F1 and F2
11 that represents neural processes that are positively associated with SCZ and ASD and not
12 associated with mood disorders (Fig. S6B-C).
13
14 F3 was characterized by positive loadings of MDD-DEL and ADHD-DEL (Fig. 5b; Fig. S6b).
15 Positively-scoring gene sets consisted of DEL effects in Cell-signaling and neurotransmission
16 (SynapTrans, VesiclTraff) in inhibitory neurons (InNeuPre, InNeuPost). Negatively-scoring
17 gene sets were broadly distributed across regulatory and metabolic pathways in microglia
18 and neurovascular cells. Notably, nearly all (18/19) canonical pathways showed strong
19 positive F3 factor scores in the sensorimotor cortex (Fig. 5i,k), consistent with the positive
20 correlation of MDD-DEL and ADHD-DEL with the S-A axis in Figure 3a-b. Thus, F3 captures
21 differential DEL effects in synaptic and regulatory pathways that vary along the S-A axis and
22 in cell-type populations that align with this cortical expression gradient, such as inhibitory
23 interneurons 55.
24
25 High-impact CNVs have a variety of cell-type specific gene-dosage effects
26 For CNV loci with the largest effect sizes on psychiatric traits, including reciprocal CNVs at
27 16p11.2, and 22q11.2 40, clinical phenotypes are likely driven by the combined effects of
28 multiple genes within each region <sup>39,61–63</sup>. Results from this study further suggest that a CNV
29 may exert its influence through distinct pathway effects in multiple cell types.
30
31 Duplication of 16p11.2 BP4-BP5 confers significant susceptibility to SCZ and BD, and Deletion
32 is associated with ASD (Fig. 6a), consistent with some hallmarks of F1. Single-cell expression
33 datasets 44 confirm that expression of genes within the locus differs significantly by cell type
34 (Fig. 6b), A network was constructed representing cell-type expression of CNV genes and
35 pathways (Fig. 6c), highlighting several pathway-cell type effects that are consistent with
36 positively-scoring gene sets on factor F1 including several genes tied to regulatory pathways
37 in neurovascular cells (MAPK3, ALDOA, MVP, TMEM219, TAOK2) and microglia (CORO1A,
38 INO80E) as well as MAPK signaling and synaptic plasticity in postnatal excitatory neurons
39 (YPEL3 PRRT2).
40
```

- 1 The 22q11.2 A-D locus has mirror positive and negative effects of DEL and DUP respectively
- 2 on SCZ susceptibility (Fig. 6d), which is also a hallmark of F1. Pathway-cell type effects in
- 3 22q11.2 are consistent with negatively-scoring gene sets on F1, including chromatin,
- 4 translation and GTPase signaling in fetal excitatory neurons (SLC25A1, MRPL40, CLTCL1,
- 5 THAP7), axon guidance and endosome recycling in postnatal excitatory neurons (RTN4R,
- 6 POI4KA, ZDHHC8) and calcium signaling in postnatal inhibitory neurons (P2RX6)(Fig. 6e,f). As
- 7 mentioned previously, gene set effects listed here, persist after removing all genome-wide
- 8 significant loci. Thus, the functional gene sets enriched within major CNV loci generalize to
- 9 gene-dosage effects in the rest of the genome.



12 Fig. 6 | Cell-type specific expression of genes within major CNV loci 16p11.2 BP4-BP5 and 22q11.2 A-D suggests that the 13 functional influence of a CNV in the brain may be driven by distinct pathway effects across a variety of cell types. CNV

1 associations displayed in (a) and (d) were obtained from Shanta et al. 40 Colors indicate the association direction and effect
2 size (z-score), and asterisks indicate FDR<10% results. (b) and (e) heatmaps show log2 fold-change of cell type expression of
3 the genes within each locus. The colors indicate the differential expression level. CNV-gene-gene-set networks in (c) and (f)
4 display the CNV genes and their participation in the pathway-cell-type stratified gene sets. Shapes represent different
5 entities of the network where the big circle in the middle is a GWS locus, peripheral circles are genes in the locus. A gene
6 may be linked to one or more pathways (diamond) and at the end of the pathway, a cell type (square) is connected to
7 indicate the gene membership of one or more stratified pathways of the same cell type. The color of diamond nodes
8 indicates the group of pathways.

10 Discussion

21

11 We present an integrative framework for characterizing the functional convergence and divergence of rare genetic influences on mental health traits. Using a statistical genetic approach, gene set burden analysis (GSBA) ⁵, we analyze the association of aggregate rare CNV burden in functional gene sets with diagnostic categories. A key element was to apply a multidimensional approach that quantified divergent effects of DEL and DUP in gene sets that represent the intersections of molecular pathways, neural cell types and cortical regions. This approach yields key insights into the neural basis of psychopathology. We demonstrate that, while major diagnostic categories converge on common molecular pathways, they diverge in the cellular context, spatial distribution, and directionality of genetic effects.

Gene-set burden tests identified 19 neurodevelopmental pathways, highly overlapping between ASD and SCZ, that were consistent with prior CNV ^{3,5}, WES ^{17,18}, and GWAS^{15,64} studies. These included pathways involved in neuronal signaling, GTPase and receptor mediated cell signaling, chromatin, translation, and metabolism. Cell-type associations included fetal excitatory neurons in ASD; excitatory neurons and oligodendrocytes in BD; and postnatal excitatory neurons, microglia, and neurovascular cells in SCZ. The involvement of neurovascular gene sets is notable given prior links of SCZ^{65–67}, BD ⁶⁸ and ASD ^{32,69} to cardiovascular disease. However, comparing lists of pathways and cell types does not reveal clear relationships between neural functions and diagnostic categories.

32 A key insight, originating from our companion paper ⁴⁰, is the dose-dependent effect of 33 genes in SCZ and other diagnostic categories, evident by the inverse correlation of effect 34 sizes for reciprocal DEL and DUP of the same genes. Stratification of pathway associations by 35 gene dosage showed that pathway associations, particularly in SCZ, differ by dosage. 36 SCZ-DUP effects were concentrated in core regulatory pathways and DEL effects in neuronal 37 signaling.

39 In addition, incorporating spatial patterns of gene expression into GSBA revealed differential 40 genetic effects across brain regions. In several diagnostic categories, the spatial distribution 41 of gene dosage effects aligned with the S-A axis, a cortical gene expression gradient, 42 extending from transmodal association areas (frontal, temporal cortex) to sensorimotor 43 regions (visual, auditory cortex), and spatial distributions differed by diagnostic category,

```
1 with DEL effects in MDD, ADHD and SCZ enriched in sensorimotor cortex, while DEL effects
 2 BD and DUP effects in ASD, PTSD and SCZ were enriched in association cortex.
 3
 4 These findings highlight how stratification of genetic effects by context and gene dosage
 5 allow for the differentiation of diagnostic categories. To determine where genetic effects
 6 converge and diverge at multiple levels, we investigated gene-dosage effects in the
 7 interactions of pathways, cell types and cortical regions. Mixed-effects modeling
 8 demonstrated that associations of gene sets captured the largest share of variance when
 9 pathways were stratified by cell type, and dosage. Spatial information also contributed a
10 modest additive effect representing differential genetic effects along the S-A axis, as
11 observed for MDD-DEL and ADHD-DEL (Fig. 3).
12 Factor analysis revealed three latent dimensions of gene-dosage effects (F1, F2, F3) that
13 capture shared and distinct genetic architectures across diagnoses. A major factor F1
14 captured a set of neural processes that have a dose-dependent relationship to SCZ (DUP
15 positive, DEL negative) and dose-aligned relationship to ASD (DUP positive, DEL positive),
16 with distinct pathway-cell type combinations at opposing ends of the dose-response curve.
17 SCZ-DUP associations in cell-signaling (MAPK, cell-cycle) and metabolic pathways were
18 concentrated in postnatal excitatory neurons and neurovascular cells. SCZ-DEL associations
19 in neuronal signaling (synaptic, calcium) were concentrated in inhibitory interneurons,
20 consistent with an imbalance of excitation and inhibition <sup>70</sup>. Dose-dependent effects in SCZ
21 also correlated with the S-A axis (Fig. 3) with DUP effects aligned to the association cortex
22 and DEL effects in sensorimotor regions. This pattern suggests that one major dimension of
23 psychosis consists of negative effects on inhibitory activity (disinhibition) in sensory
24 processing and positive dysregulation of excitatory processes in frontal/temporal regions.
25 Thus, our genetic findings could inform studies of neurophysiology in schizophrenia 71,72.
26 Notably, ASD contrasts with SCZ in the directionality of effects in F1. In contrast to the
27 dose-dependent effects in SCZ, In ASD, opposing effects of DUP and DEL are concentrated
28 within the same neural processes. This fact could reflect distinct linear and non-linear dose
29 responses for the cognitive traits underlying psychosis and social behavior respectively.
30 Additional factors captured orthogonal neural processes associated with mood disorders
31 and ADHD. F2 implicated cell-type specific effects in mood disorders consisting of divergent
32 positive and negative effects on cell-signaling between non-neuronal and neuronal cells
33 respectively, the latter being a point of divergence from SCZ and ASD. These findings
34 represent a possible genetic basis for differences in the densities of neurons and glia that
35 have been reported in postmortem studies of BD and MDD 26. F3 reflected differential DEL
36 effects along the S-A axis capturing broad sensorimotor enrichment in ADHD and MDD
37 consisting of synaptic and regulatory pathways in cell-type populations that align with this
```

38 cortical gene expression gradient, such as inhibitory interneurons 55.

- 1 We also show that specific high-impact CNVs are enriched for combinations of
 2 cell-type-specific genes involved in pathways consistent with our broader findings. 16p11.2
 3 BP4-BP5 ⁴ represents a genomic region that is enriched for multiple functional gene sets at
 4 the positive end of factor F1 (cell signaling pathways in ExNeuPost and VascPost). Conversely
 5 22q11.2 A-D ⁷³ is enriched for functional gene sets at the negative end of F1, such as
 6 regulatory pathways in ExNeuPre and calcium signaling InNeuPost. These results suggests
 7 that the large effects of an individual CNV may result from the combined impact of genes
 8 acting across multiple neural processes. Thus, 16p11.2 and 22q11.2 CNVs are monogenetic
 9 conditions that could serve as models for the dose-dependent effects of the major factor F1.
- 9 conditions that could serve as models for the dose-dependent effects of the major factor F1

 10 High-risk CNVs, such as these represent patient groups that can be recruited for deep
- ${f 11}$ phenotypic characterization ${f 74}$ and parallel functional characterization of neural processes in
- 12 brain organoid models $^{75,76}.$ Thus the findings from this study can be directly applied in
- 13 clinical and translational studies of CNVs.

24 that underlie different dimensions of psychopathology.

14 Our results provide a genetic basis for previous findings from other NIH-funded
15 collaborations such as the PsychEncode consortium. Consistent with findings from Gandal et
16 al., functional analysis of CNVs shows that core molecular pathways are shared by multiple
17 diagnostic categories, such as ASD, SCZ, BD and MDD including synaptic transmission and
18 neuronal signaling pathways ¹⁹ and there are divergent effects in neuronal and non-neuronal
19 cell types ²⁰. Considering just one level of biological organization at a time, such as pathways,
20 the patterns that emerge from PsychEncode, GWAS, WES and CNVs are dominated broadly
21 by "functional convergence" that seemingly spans all diagnostic boundaries. However, when
22 genomic approaches take into consideration the joint influences of cell types, spatial
23 distribution and directionality (dosage) of the pathway effects, distinct mechanisms emerge

26 Acknowledgements

25

We thank the many research participants. The PGC is supported by grants to UCSD

RO1MH124847), UNC (R01MH124871), MGH (R01MH124851), Mount Sinai School of

Medicine (R01MH124839), Cardiff University (R01MH124873), Trinity College Dublin

R01MH124875) and Washington University St. Louis (R01DA054869). Additional support

was provided by grants to J.S. (MH119746, MH133899), C.N. (MH106595, MH124847) and

S.J. (U01 MH119690, U01 MH119739, CIHR_495906). Funding for the work in Bipolar

Disorder was supported by the Research Council of Norway (#223273, 248778, 262656,

4273291, 283798, 248828), South East Norway Health Authority (2017-112), and KG Jebsen

Stiftelsen. The iPSYCH project is supported by grants from the Lundbeck Foundation

(R165-2013-15320, R102-A9118, R155-2014-1724 and R248-2017-2003) and the universities

and university hospitals of Aarhus and Copenhagen. Genotyping of iPSYCH samples was

supported by grants from the Lundbeck Foundation, the Stanley Foundation, the Simons

Foundation (SFARI 311789 to M.J.D.), and NIMH (5U01MH094432-02 to M.J.D.). The Danish

National Biobank resource was supported by the Novo Nordisk Foundation. Data handling

- 1 and analysis on the GenomeDK HPC facility was supported by NIMH (1U01MH109514-01 to
- 2 A.D.B.). High-performance computer capacity for handling and statistical analysis of iPSYCH
- 3 data on the GenomeDK HPC facility was provided by the Center for Genomics and
- 4 Personalized Medicine and the Centre for Integrative Sequencing, iSEQ, Aarhus University,
- 5 Denmark (grant to ADB). Additional support to S.W.S from The University of Toronto
- 6 McLaughlin Centre, the Hospital for Sick Children (SickKids) Foundation, the Ontario Brain
- 7 Institute, Genome Canada/Ontario Genomics Institute and the Northbridge Chair in
- 8 Paediatric Research held at the Hospital for Sick Children and University of Toronto.

10 Competing interests

- 11 S.W.S. has served on the Scientific Advisory Committee of Population Bio and has been
- 12 involved in Deep Genomics. Intellectual property from aspects of his research held at the
- 13 Hospital for Sick Children are licensed to Athena Diagnostics and Population Bio.

15 Author Contributions

14

26 27

- 16 The multidimensional analysis framework described here was developed through a team
- 17 effort. Data analysis and manuscript preparation was led by WE and JS. Statistical models for
- 18 multidimensional analysis of gene dosage effects were developed by WE and JS. Study
- 19 design and statistical methods for meta-analysis of CNV across diagnostic categories was
- 20 developed by OS and JS. Methods for spatial mapping of gene set associations were
- 21 developed by KK and SJ ⁷⁷. Statistical models for pathway analysis of CNV burden were
- 22 developed DM, WE and SWS 5. CNV calling and derivation of CNV QC metrics and SNP-based
- 23 ancestry PCs was performed by OS, BT, JM. Management of data access and enormous
- 24 amounts of data wrangling were led by OH and OS in coordination with the remaining
- 25 coauthors who carried out data collection.

28 Data and code Availability

- 29 A WDL workflow containing all steps of CNV calling, QC and CNV-GWAS and meta-analysis
- 30 code is under construction and will be released on the PGC CNV Github in conjunction with
- 31 this publication (https://github.com/orgs/psychiatric-genomics-consortium/teams/cnv).
- 32 Analysis code for GSBA and downstream analyses (https://github.com/naibank/PGC_GSBA)
- 33 Gene sets, see Table S1, Gene-set summary statistics, see Table S3.
- 34 Raw genotype and intensity files are available on subset of the cohort
- 35 PGC dbGAP datasets
- 36 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/collection.cgi?study_id=phs001254.v1.p
- 38 Simons Foundation Autism Research Initiative SFARI (SSC and SPARK) https://base.sfari.org/

1 Methods

13

2 1. Participants and CNV data

- 3 The CNV subgroup of the Psychiatric Genomics Consortium (PGC) works in collaboration
- 4 with principal investigators from many labs to obtain large sample sizes of microarray data
- 5 and analyze them using a centralized pipeline. We acquired microarray intensity files from
- 6 GWAS for a total of 574,965 samples that included data from cases and controls for 6
- 7 diagnostic categories (Table S1 in our companion paper⁴⁰). These samples were genotyped
- 8 on 25 platforms across 4 genome builds. Data from Illumina was collected as either raw
- 9 intensity data (IDAT) files or final report files while data from Affymetrix was collected as CEL
- 10 files. To harmonize data, probes for newly acquired datasets were lifted over to GRCH38 for
- 11 CNV calling while previously called CNVs were lifted over to GRCH38. Samples were
- 12 genotyped on either Illumina or Affymetrix array.
- 14 For samples that were provided as IDAT files, the Illumina command line version of Genome
- 15 Studio was used in conjunction with platform-specific manifest and cluster files to produce
- 16 genotype call (GTC) files. Relevant features were extracted from GTC files to obtain final
- 17 report files with probes, genotypes, Log R Ratio (LRR), and B Allele Frequency (BAF) for each
- 18 sample. For samples that were not mapped to GRCH38, probe genome positions were
- 19 converted to hg38 using the LiftOver tool. Samples within each platform were grouped into
- 20 batches by plate. For Illumina/PsychChip arrays, CNVs were called using two methods:
- 21 PennCNV and iPattern. For Affy6 arrays, CNVs were called using four methods: PennCNV,
- 22 iPattern, CScore, and Birdsuite. For Affy5 and Affy500K arrays, CNVs were called using two
- 23 methods: PennCNV and Birdsuite. For Axiom arrays, CNVs were called using two methods:
- 24 PennCNV and QuantiSNP. The consensus of CNV calls from multiple callers was created by
- 25 merging CNVs at the sample level and retaining CNVs that were called by at least 2 methods.

27 1.1 Sample QC

26

- 28 Quality control (QC) was performed first at the sample level, and conducted independently
- 29 for each microarray platform, according to methods from our previous CNV GWAS of
- 30 schizophrenia (Marshall et al. 2017⁵). For Illumina arrays, LRR standard deviation, BAF
- 31 standard deviation, and GC waviness factor were extracted from PennCNV log files. Samples
- 32 were retained if each of the measures were within 3 SD of the median. Affymetrix arrays
- 33 used MAPD and waviness-sd parameters from affy power tools. Samples were further
- 34 evaluated based on the number and total length of autosomal CNVs detected, and were
- 35 retained if these values did not exceed 3 SD of the mean. The proportion of the
- 36 chromosome that was tagged as a CNV was calculated and samples were excluded if >10%
- 37 of the chromosome was marked as a CNV region to filter possible aneuploidies.

39 1.2 CNV QC

- 40 Large CNVs that were fragmented were merged. CNVs <10kb in length or containing <10
- 41 probes were excluded. CNV calls were removed if they spanned the centromere or telomere

- 1 (100kb from end of chromosome) or had >50% overlap with segmental duplications,
- 2 immunoglobulin, or T cell receptor (recurrent CNVs were processed without segmental
- 3 duplications, immunoglobulin, and T cell receptor filters). The call set was restricted to rare
- 4 CNVs with ≤10% frequency within-platform or across all platforms.

6 2. Ancestry Principal Components and Ancestry Partitioning

- 7 We extracted a subset of SNPs with < 1% missingness across all platforms (12,185 SNPs) and
- 8 performed a principal component analysis using the flashPCA software 78. In order to
- 9 genetically infer the ancestry of each individual, we used the SNPweights software 79 on the
- 10 same subset of SNPs to calculate % ancestry based on a reference panel containing 6
- 11 different populations (751 EUR, 687 EAS, 630 SAS, 568 AFR, 41 AMR, 22 OCE). Samples were
- 12 categorized into 5 large homogeneous groupings based on the following criteria used in a
- 13 previous study 80 39 (Table S2, Fig S1): EUR: subjects with EUR \geq 90%, AFR/AFAM: subjects
- 14 with EUR < 90% & AFR \geq 5% & EAS/SAS/AMR/OCE < 5%, ASN/ASAM: subjects with EUR <
- 15 90% & (EAS \geq 5% or SAS \geq 5%) & AFR/AMR/OCE < 5%, LAT: subjects with EUR < 90% & AMR
- $_{16} \ge 5\%$ & EAS/SAS/AFR/OCE < 5% or EUR < 90% & AMR $\ge 60\%$ & EAS < 20% & SAS < 15% &
- 17 AFR/OCE < 5%, MIX: Uncategorized subjects.

19 3. Gene QC

18

32

37

41

- 20 To avoid having false positive findings arising due to a platform or dataset biases, we
- 21 performed an extra filtering step of the genes being included in the gene set analysis. For
- 22 each gene, separately for DELs and DUPs, CNV frequency was calculated per platform and
- 23 dataset. Given the reduced penetration of the most recurrent CNVs, the incident frequency
- 24 of such CNVs can be higher than that of disease prevalence. In particular, 15q11.2 DEL
- 25 (major risk locus for ASD and SCZ) has been reported to have an incident rate between
- 26 0.57-1.27% 81, thus, using an inclusive frequency threshold, wWe then limited the CNVs to
- 27 those with frequency lower than 2% across platforms and datasets. In addition, we
- 28 calculated weight deviance score (WDS) of CNV frequency per platform/dataset and used
- 29 that to derive a platform/dataset specificity index (SI). Specifically, for each gene, CNV
- 30 frequency (C_i) for a particular platform/dataset was compared to the expected CNV
- 31 frequency (E_i) estimated from across platforms/datasets as shown in Eq.1.

$$E_i = N_i * C_{all} / N_{all}$$
 (Eq.1)

34 where for a particular platform/data i, E_i is the expected CNV frequency, N_i is the sample

35 size, C_{all} is the CNV frequency in the entire dataset, and N_{all} is the entire dataset sample size.

$$WDS_i = (C_i-E_i)/sqrt(E_i*N_i)$$
 (Eq.2)

- 38 Then WDS; was calculated as Eq. 2. With the max WDS across platforms/datasets
- 39 representing the specificity index. We removed genes having dataset $SI \ge 0.2$ and
- 40 platform_SI > 0.6 from subsequent analyses.

1 4. Gene set data

2 4.1 Cortical regions

- 3 To generate gene sets for different cortical regions of the human brain, we acquired gene
- 4 expression data in the brain from Allen Human Brain Atlas (AHBA;
- 5 https://human.brain-map.org/static/download)46, multimodal brain parcellation from
- 6 Glasser's brain regions⁴⁵. Using the Abagen toolbox (version 0.1.3;
- 7 https://github.com/rmarkello/abagen)82, we mapped brain parcels and gene expression
- 8 data, and then performed gene expression normalization and scaling. Specifically, a robust
- 9 sigmoid function was used to normalize the expression data across genes to address
- 10 inter-sample variation, while min-max normalization was applied after to scale the gene
- 11 expression across tissue samples. Using the left hemisphere, we defined 180 regions from
- 12 Glasser's brain regions⁸³. To generate the gene sets, the region-mean expression levels of
- 13 each gene were z-transformed across the regions. Genes were then assigned to cortical
- 14 region(s) when their z-score>1. The median gene set size was 4,429 genes (see Table S1). To
- 15 visualize cortical region results, we used ggseg v1.6.584 and ggsegGlasser R libraries for
- 16 Glasser's brain regions.

18 4.2 Cell types

17

- 19 We obtained single-cell RNA-seq data from Velmeshev et al., 2023 44, which contains the
- 20 data >700,000 nuclei covering both prenatal and postnatal development periods and 8
- 21 defined cell type clusters. The 8 defined cell type clusters were 1. Oligodendrocyte precursor
- 22 cells (OPC), 2. Vascular cells (Vasc), 3. Excitatory neurons (ExNeu), 4. Oligodendrocytes
- 23 (Oligo), 5. Interneurons (InNeu), 6. Microglia (Mg), 7. Astrocytes (ASst), and 8. Glial
- 24 progenitors (Gpc). Using the cluster result from the original study, we redefined the cluster
- 25 by taking into account the developmental period of the cell. Doing so, we obtained 12 cell
- 26 type clusters; 1. postnatal Opc, 2. postnatal Vasc, 3. postnatal ExNeu, 4. postnatal Oligo, 5.
- 27 postnatal InNeu, 6. postnatal Mg, 7. postnatal Ast, 8. prenatal ExNeu, 9. prenatal Ast, 10.
- 28 prenatal Opc, 11. prenatal InNeu, and 12. prenatal Gpc. We then generated cell type marker
- 29 gene sets using FindAllMarkers() function from the Seurat package. Genes were assigned to
- 30 a particular cell type cluster with the highest average log2 fold-change only when the
- 31 corresponding p-value is < 0.05 (**Table S1**). The gene set size for cell types were smallest in
- 32 prenatal OPC (181 genes), and largest in postnatal Mg (2,058 genes) with a median of 1,223
- 33 genes.

34

35 4.3 Molecular pathways and pathway clusters defined using EnrichmentMap

- 36 We compiled gene sets from multiple databases including Gene Ontology 41, KEGG pathways
- 37 42, and Reactome 43. We filtered the gene sets to include only those with size between 50

1 and 500 genes, excluding sets with broader definition (>500 genes) and those with low 2 statistical power (<50 genes). In total, we acquired 2,453 gene sets. To reduce dependency 3 between tests for multiple testing correction, we further exclude 758 more gene sets 4 through a step-down approach. Specifically, for each gene set, we removed any smaller 5 subset with substantial gene overlap (Jaccard's index >0.75). The gene set sizes for molecular 6 pathways range from 50 genes to 495 genes with a median of 145 genes. 7 8 To summarize the pathway associations, we applied the EnrichmentMap Cytoscape plugin 49 9 on the top associated gene sets (BH-FDR<5%, with z-score>0) from all the conditions. There 10 were 361, 106, 7, and 5 gene sets associated with SCZ, ASD, BD, and ADHD, respectively. By 11 limiting to pathway clusters with at least 3 gene set members, this results in 19 pathway 12 clusters. We then constructed new gene sets by merging all gene sets within each cluster for 13 subsequent analyses. 14 15 16 5. Gene set burden analysis and sample-weighted meta analysis 17 Differences in genotyping platforms have been known to confound CNV detection given the 18 variance in probe coverage. While the most common way to tackle platform bias in CNV data 19 analysis is to model the effect as one of the covariates, however, the effect is not well 20 controlled in a single regression model. In this study, we performed gene set burden analysis 21 independently for different genotyping platforms and meta-analyzed the summary statistics 22 derived from the individual platform analysis. Using ASD and SCZ as a preliminary 23 experiments, in both conditions, we found a smaller genomic inflation factor or lambda (λ) 24 value (Eq.3) in the meta-analysis result (λ_{ASD} =1.78, λ_{SCZ} =3.35) compared to the mega-analysis 25 result (using platform as a covariate, λ_{ASD} =1.82, λ_{SCZ} =3.66). 26 λ =median(χ^2)/0.455 (Eq.3)28 where χ^2 is chi-square statistics, and 0.455 is the theoretical mean of chi-square 29 distribution. 30 31 Specifically, we performed the gene set analysis on platforms where there are at least 50 32 cases and 50 controls. For each platform, a univariate analysis was conducted to compare 33 the burden of genes in a gene set impacted by DELs or DUPs between cases and controls. 34 The univariate analysis was done in one of two ways, either 1) a traditional case-control 35 comparison for each individual condition, or 2) a family-based comparison. For the 36 traditional case-control comparison, logistic regression was applied by regressing the 37 number of genes in a gene set impacted by DELs or DUPs on the affection status (1 = 38 affected, 0 = unaffected). Population structure (PC1-10), sex, and the number of genes

39 outside the gene set impacted by DELs or DUPs were used as covariates to correct for any 40 biases in the population, sex and total burden load. For the family-based comparison, we 41 applied conditional logistic regression the same way logistic regression was applied, except

- 1 that samples were matched by family ID. A likelihood ratio test was done to estimate p-value
- 2 by comparing two regression models with and without the testing variable, in this case, a
- 3 gene set burden.

11

25

- 4 A sample-weighted meta-analysis was applied to account for substantial differences in
- 5 sample size between platforms. We derived the weight for each platform based on the
- 6 effective sample size as shown in Eq.4.

Weight_i = $sqrt(4/(1/Ncase_i + 1/Nctrl_i))$ (Eq.4)

9 where Ncase_i is the number of cases in platform_i, and Nctrl_i is the number of controls in platform_i.

12 6. Gene burden analysis

- 13 We generated gene-level summary statistics by meta-analyzing the summary statistics from
- 14 individual platform gene burden analysis. Similar to the gene set burden analysis, the gene
- 15 burden analysis was done by either performing a logistic regression for case-control dataset,
- 16 or conditional logistic regression for family-based dataset. We regressed the status of the
- 17 CNV whether or not a sample has DELs or DUPs overlapping a particular gene on the
- 18 affection status of the condition. Like gene set burden analysis, population structure
- 19 (PC1-10), and sex were corrected in the analysis, with family ID being a random effect
- 20 variable for conditional logistic regression. As multigenic CNVs might drive correlation
- 21 between tests and that would affect multiple testing correction, genes were merged when
- 22 the Jaccard index estimated from the proportion of CNVs commonly found between genes
- 23 was >0.75. Since we only used the gene burden results to visualize findings from the main
- 24 analysis, we did not report them in this study.

26 7. Correlation analysis of CNV association and Sensorimotor-Association axis and

27 pathway-S-A-axis gene set stratification

- 28 We investigated how CNV associations distributed along the cortical gradient using the
- 29 dominant brain transcriptomic variance data compiled in Dear et al 51. This is the PC1 of
- 30 AHBA transcriptomic profile⁴⁶ projected on the Glasser parcellation ⁴⁵. The data was
- 31 processed to exclude spatially inconsistent genes and, under sampling parcellations with a
- 32 low number of donors (<6 donors). As a result, the final principal component analysis was
- 33 performed on 134 parcellations and 7,937 genes. The CNV meta-analysis summary statistics
- 34 of 134 Glasser parcellations was then compared with the PC1 AHBA using Spatial
- 35 Permutation Inference (SPIN test⁵⁹ with 10,000 permutations) with Kendall coefficient
- 36 analysis.

- 38 To stratify gene set by the S-A axis, we first compute the Kendall coefficient of each gene
- 39 against the PC1 AHBA. The gene expression matrix was preprocessed and obtained from
- 40 Dear et al 51 where it contains the data for 10,028 genes, of which 8,588 genes are a member
- 41 of at least one gene set. This identified ~76% of the genes (n=6,552) to be correlated with

- 1 the S-A axis at nominal significant level (p<0.05). We then stratified each gene set into 1)
- 2 sensorimotor cortex set (tau>0, p<0.05), and 2) association cortex set (tau<0, p<0.05),
- 3 leaving out other non-correlated genes from the subsequent analysis.

5 8. Genetic correlations based on gene-set summary statistics

- 6 We compared each pair of summary statistics (e.g., a pair of DEL and DUP summary
- 7 statistics) 1) within the same condition to assess dosage sensitivity at the gene set level in
- 8 each condition, and 2) between two conditions to assess gene set profile similarity between
- 9 conditions. To do so, we performed a Kendall rank correlation analysis of the z-scores
- 10 estimated from the meta-analysis of gene set burden results across individual platforms.
- 12 To examine correlations between cortical maps (e.g., CNV associations, transcriptomic
- 13 gradient map, etc.), we applied a commonly used spatial Kendall's correlation and assessed
- 14 significance against a two-sided spatial autocorrelation-preserving null mode (SPIN test) 59,
- 15 accounting for high inter-regional correlations as a result of spatial smoothing. To reduce the
- 16 influence of gene set size on the z-score and the estimated correlation, we regressed out the
- 17 gene set size from the z-score and performed correlation analysis on the residuals.
- 19 Using stratified gene set summary statistics, we estimated genetic correlations in 2 ways: (1)
- 20 First, was to treat each diagnosis-dosage combination as an independent component and to
- 21 examine the correlations of each (12 x 12, Table S11). (2) Second we examined the
- 22 correlation of all the gene-set effects combined by stacking DEL and DUP summary statistics
- 23 and aligning them directly between diagnoses (Table S12). Genetic correlations of
- 24 independent diagnosis-dosage combinations showed greater contrast between diagnostic
- 25 categories (Fig. S5g).

11

18

26

33

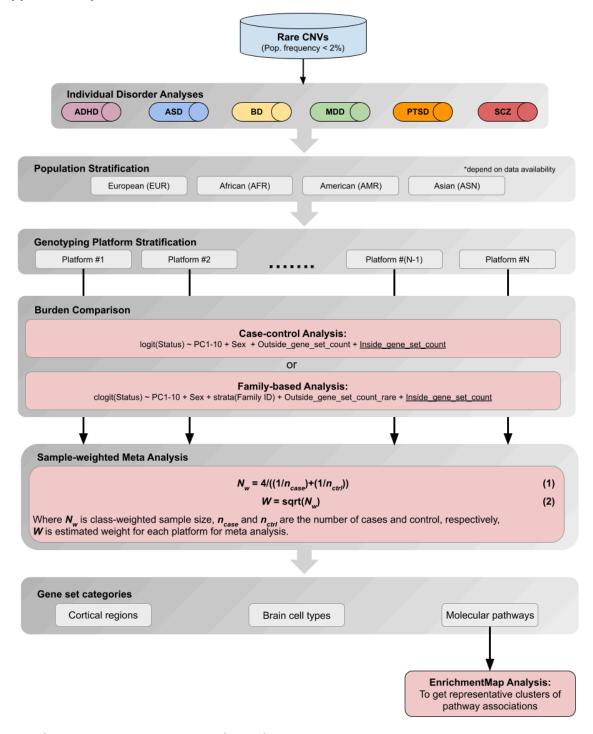
27 9. Latent factor analysis

- 28 We performed a latent factor analysis on the two-way (pathway-cell-type, pathway-brain)
- 29 and three-way (pathway-cell-type-brain) stratified gene set summary statistics to investigate
- 30 the shared and convergent dosage effects amongst the 6 psychiatric conditions using psych R
- 31 library. The number of factors was optimized using a scree plot (elbow plot) of PCA on the
- 32 summary statistic where a 3-factor solution was chosen (Fig. S4).
- 34 We specified a 3-factor solution using the fa() function, which estimates factor loadings that
- 35 describe how each diagnosis-dosage combination contributes to the latent factors. A
- 36 heatmap of the factor loading matrix, styled similarly to the genomic SEM plots, was
- 37 generated to visualize how diagnoses align with these latent dimensions. To relate individual
- 38 pathway gene sets to the latent factors, we computed the factor score for each gene set as a
- 39 product between their z-scores and the factor loadings across diagnosis-dosage
- 40 combinations, producing a second heatmap that highlights which biological pathways align
- 41 most strongly with each latent genetic factor. For this second heatmap, specifically for

1 pathway-cell-type stratified gene sets, we performed a sign-based bi-clustering on the 2 heatmap where pathways are in rows, and cell types are in columns. The pathways and cell 3 types were ordered in a descending order based on their average factor scores. This resulted 4 in two main clusters of groups of pathways and cell types for i) positive and ii) negative 5 factor scores. 6 7 All 2 way and 3 way stratification were included in the mixed-effects model analysis (Fig. 4). 8 A factor analysis of three-way stratified gene sets (Fig. S8) produced similar factor solutions, 9 genetic correlations and factor scores as the results in Figure 5. However, overall signal was 10 comparatively weak due to the sparsity of the counts in the 3-way stratification of the data 11 and the sparsity of gene sets that could be included in the analysis (stratifying pathway, by 12 celltype, brain and dosage resulted in >50% of gene sets meeting the minimum size of 30 13 genes, Fig. S7). Thus main results in Figure 5 include only the 2 way (pathway-cell type and 14 pathway-brain) gene sets. 15 16 10. Linear model analysis investigating variance explained by different genetic factors 17 Using stratified gene set summary statistics, we evaluated which levels of biological 18 organization best explain the variation in the gene-set effects within each diagnosis. We 19 performed linear modeling on the effect sizes of the stratified gene-sets (z-scores) with 20 different combinations of pathway, cell type, brain, and dosage as independent variables. 21 For each diagnostic category, variance explained (R^2) in summary statistics was calculated for 22 the full model, the main effects, and the interactions of these factors. 23 For example, suppose we would like to test for the effect of a cell type variable and its 24 interaction term. Let m0 be the full model of all three variables (e.g., $logit(y) \sim$ 25 pathway*celltype*dosage), m1 be the model without the interaction term with all three 26 variables (e.g., logit(y) ~ pathway*celltype + celltype*dosage), m2 be the additive model 27 without the evaluating variable (e.g., $logit(y) \sim pathway + dosage$), and m3 be the additive 28 model with all three variables (e.g., $logit(y) \sim pathway + celltype + dosage$). The R^2 of the full 29 model is from m0, the R^2 of the main effect is estimated as R^2m3-R^2m2 , and the R^2 of the

30 interaction term is estimated as R^2m0 - R^2m1 . A likelihood ratio test was performed to 31 estimate the level of significance for each comparison through the *anova()* function in R.

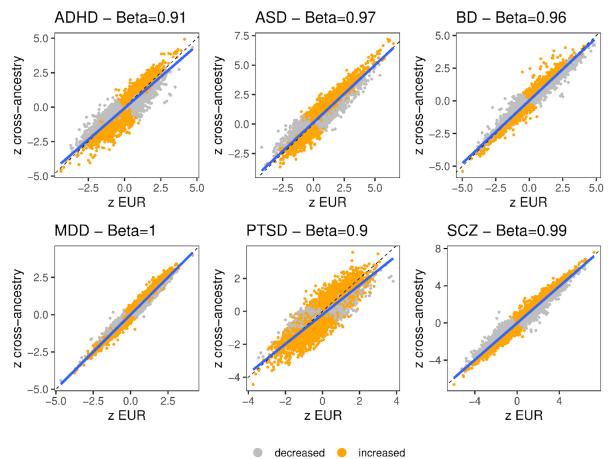
1 Supplementary materials



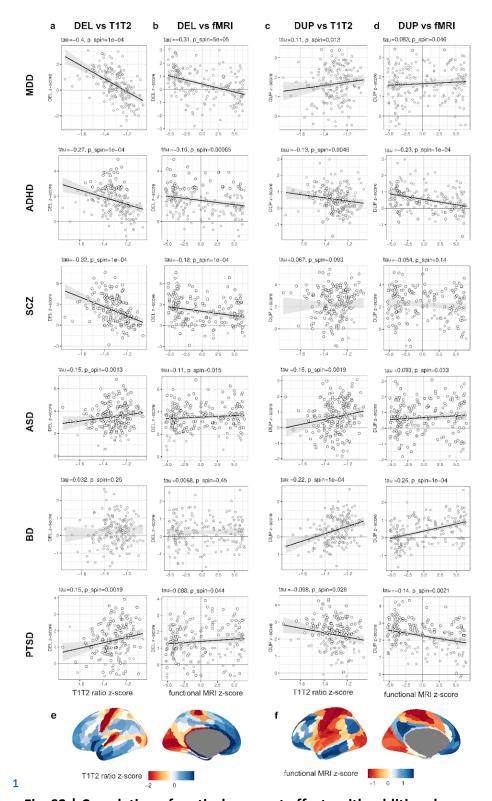
3 Fig. S1 | Gene set burden analysis (GSBA) workflow

- 4 A diagram showing the analytical procedure done for the gene set analysis of CNV data.
- 5 First, CNVs were called and filtered down to rare CNVs at 2% frequency across platform and
- 6 ancestry. Then, for each individual condition, to maximize the statistical power, we
- 7 performed a cross-ancestry analysis, and also stratified the analysis by population groups;
- 8 European (EUR), African (AFR), American (AMR), and Asian (ASN). For each stratified
- 9 analysis, the gene-set burden comparison were done independently for each genotyping
- 10 platform, then their summary statistics were meta-analyzed. For the burden comparison, we

- 1 either performed a logistic regression for case-control data, or a conditional logistic
- 2 regression for family-based data where family ID was used as a strata. Meta-analysis was
- 3 done using a sample-weighted procedure (Eq.3-4), as it has shown a better robustness
- 4 compared to a standard-error-based procedure. For the result of molecular pathways, we
- 5 further clustered them using EnrichmentMap to obtain representative pathway clusters.

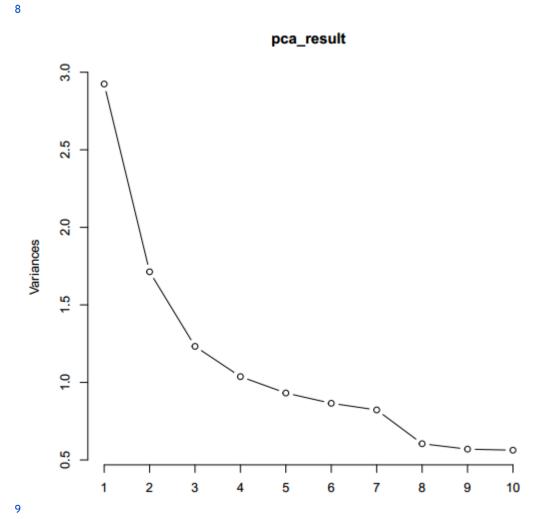


7 Fig. S2 | Comparing GSBA results between the full cohort and subjects of only European 8 ancestry - scatter plots comparing summary statistics (z statistics from the sample-weighted 9 meta analysis) between the analysis of European subset and the analysis of all ancestry. Beta 10 coefficients estimated from linear model regressing z statistics from European analysis on 11 the z statistics of cross-ancestry analysis.

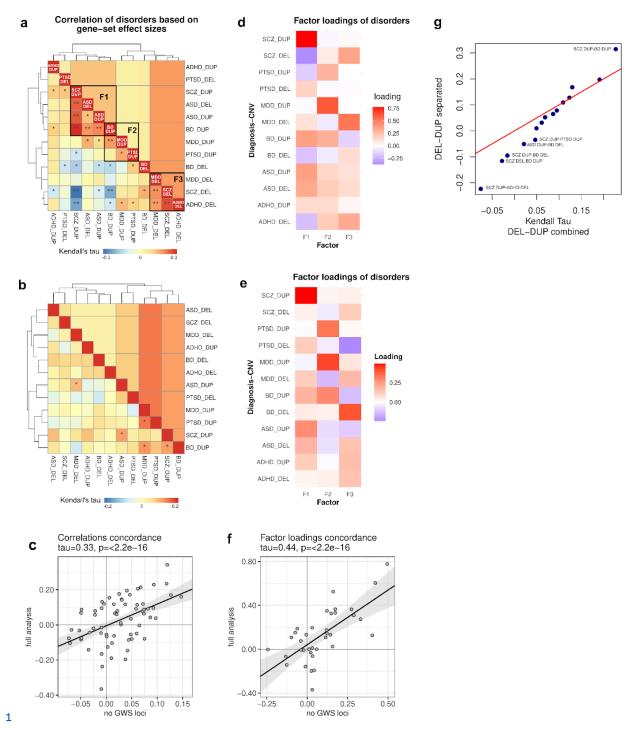


2 Fig. S3 | Correlation of cortical gene set effects with additional sensory—association
3 cortical gradients. Scatter plots show the correlation between gene-set burden z-scores for
4 DEL (a,b) and DUP (c,d) for two independent measures of cortical organization: the T1w/T2w
5 ratio which reflects regional variation in intracortical myelination, and the principal gradient
6 of resting-state fMRI. T1w/T2w and fMRI measures aligned to the Glasser grain maps were
7 obtained from Markello et al. ⁵², both of which parallel the S-A axis derived from
8 transcriptional principal components(Fig. 3). Correlation of CNV effects with these gradients

- 1 supports the spatial specificity of gene-dosage associations across multiple cortical
- 2 modalities. Together, these analyses highlight the convergent spatial patterning of CNV
- 3 effects along major anatomical and functional cortical hierarchies. (a) DEL z-score and T1-T2
- 4 ratio, and (b) DEL z-score and fMRI. (c) DUP z-score and T1-T2 ratio, and (d) DUP z-score and
- 5 fMRI. Solid trend lines indicate significant correlation where p_{SPIN}<0.05. Brain maps of T1-T2
- 6 ratio and fMRI are shown in (e) and (f) where colors indicate the z-score.



10 **Fig. S4** | Using elbow plot (scree plot), we estimated an optimal number of factors to be 3 11 factors (variance drop threshold<5)

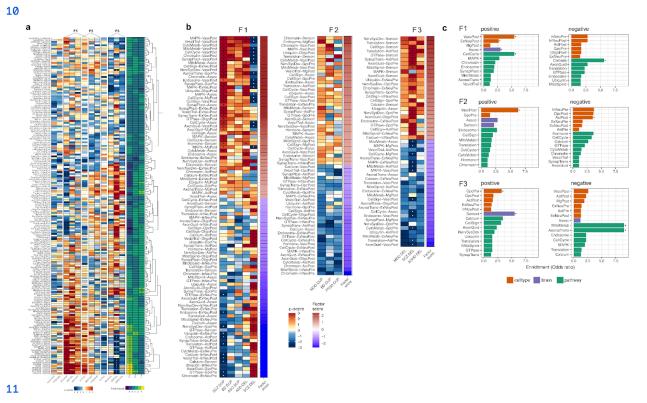


2 Fig. S5 | Factor analysis on two-way pathway stratification summary statistics without (by 3 cell type, and by brain region) genome-wide significant (GWS) loci included in the analysis.

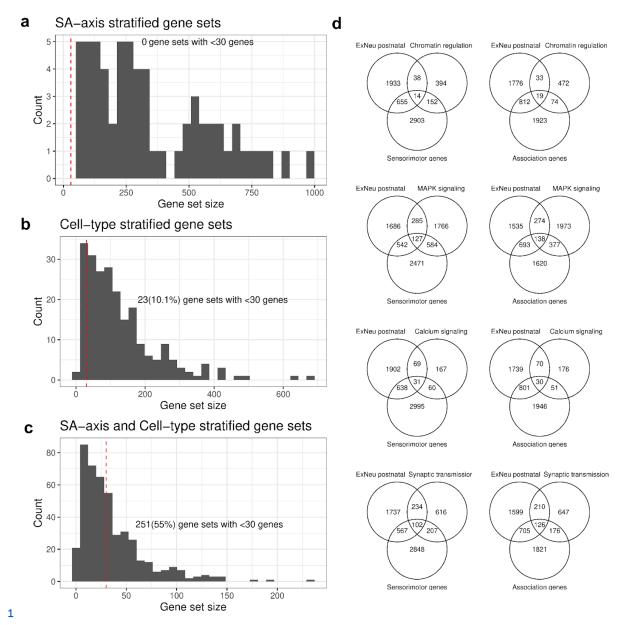
4 Genetic correlations between diagnosis-dosage from (a) the full analysis and (b) the analysis without GWS loci. Single asterisks (*) indicate nominal significance (p<0.05), while double asterisks indicate significance after multiple testing correction (q<0.05), and a factor loading threshold of > 0.25 was applied to determine factor members. (c) Correlation of genetic correlation calculated from full analysis and no GWS loci analysis. Factor loadings of diagnoses reveal distinct signatures of diagnostic categories from (d) the full analysis and (e)

10 no GWS loci analysis. (f) Correlation of factor loadings from full analysis and no GWS loci

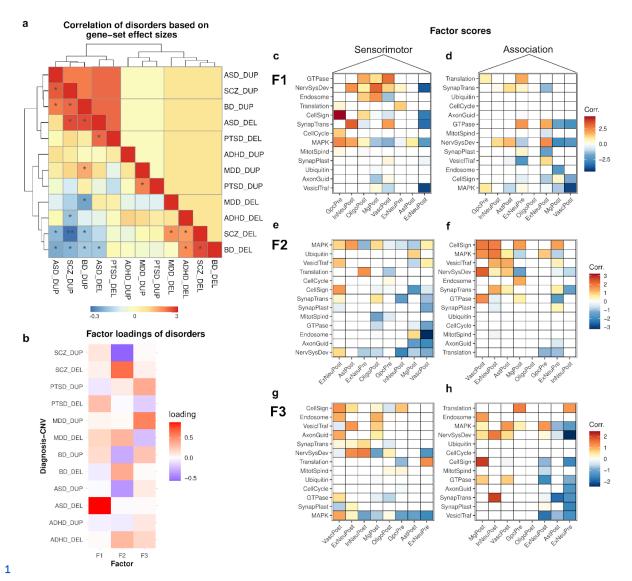
- 1 analysis. For (c) and (f) scatterplots, solid trend lines indicate significant correlation. Kendall's
- 2 Tau and corresponding p-value are reported in the title of the scatterplot. (g) QQ-plot
- 3 comparing the distributions of correlation coefficients (Kendall's Tau) when DEL and DUP
- 4 effects in each diagnosis are treated as separate components (y-axis, Table S11) vs when the
- 5 full sum stats of DEL and DUP are aligned between diagnoses (x-axis, Table S12) . The
- 6 negative tail of the y-axis distribution on the QQ plot was weakly skewed, suggesting that
- 7 the distribution was enriched for effects that diverge between diagnoses.



12 Fig. S6| Gene sets and functional terms linked to latent factors F1, F2 and F3 highlight
13 neural processes that underlie orthogonal dimensions of gene-trait relationships. (a) a
14 heatmap showing full gene set associations of all two-way pathway-stratified gene-sets (i.e.,
15 pathway-cell-type, and pathway-brain stratification). Red-white-blue color scale indicates
16 gene set effect size from sample size weighted meta-analysis (z-score). Yellow-green-blue
17 color scale indicates the F1, F2 and F3 factor scores for each gene set. Asterisks indicate gene
18 set association that meets FDR correction in the combined summary statistics on 6
19 diagnostic categories (FDR<10%). **factor scores with absolute value >1. (b) To illustrate
20 pathway-cell type and pathway-brain associations that contribute to factors, subsets of
21 diagnosis-dosage and gene-sets were selected based on factor loadings and factor scores**
22 for F1, F2 and F3 and sorted by factor score. (c) A bar plot highlighting pathway and cell-type
23 terms that were enriched among positively or negatively loaded gene sets in panel B relative
24 to the full summary statistics (fisher exact test P < 0.05).



2 Fig. S7 | Gene set size of stratified pathways. (a)-(c) Histograms display the distribution of 3 gene set size when stratified the pathway clusters by (a) S-A axis, (b) 12 cell types, and (c) 4 both S-A axis and cell types. Vertical dashed line indicates our 50 genes cut-off for gene sets to be included in the analysis. (d) Venn diagrams show the number of genes intersected 6 between the major pathway gene sets (Chromatin regulation, MAPK signaling, Calcium 7 signaling, and Synaptic transmission), Postnatal Excitatory Neurons, and Sensorimotor or 8 Association genes.



2 Fig. S8 | Factor analysis of three-way pathway-celltype-brain stratification. The result shows 3 that factor F2 and F3 are corresponding to the factor F1 and factor F2 of the main factor 4 analysis result (Fig 5.) (a) Genetic correlation between diagnosis-dosage components. (b) 5 Factor loadings. Factor scores for gene sets were shown as heatmaps for each of the three 6 factors; where (c) and (d) correspond to factor F1, sensorimotor, and association gene sets, 7 respectively. Similarly, (e,f,g,h) heatmaps show the factor scores for the factor F2, and F3.

1 Reference

- 2 1. Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific
- molecular pathways and circuits in autism. *Cell* **155**, 1008–1021 (2013).
- 4 2. Birnbaum, R. & Weinberger, D. R. Genetic insights into the neurodevelopmental origins
- of schizophrenia. *Nat. Rev. Neurosci.* **18**, 727–740 (2017).
- 6 3. Walsh, T. *et al.* Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. *Science* **320**, 539–543 (2008).
- 8 4. McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with schizophrenia.
- 9 Nat. Genet. 41, 1223–1227 (2009).
- 10 5. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a
- genome-wide study of 41,321 subjects. *Nat. Genet.* **49**, 27–35 (2017).
- 12 6. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for
- schizophrenia. *Nature* **604**, 509–516 (2022).
- 14 7. Satterstrom, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both
- Developmental and Functional Changes in the Neurobiology of Autism. Cell 180,
- 16 568-584.e23 (2020).
- 17 8. Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and
- phenotypic context of autism. *Nat. Genet.* **54**, 1320–1331 (2022).
- 19 9. Sanders, S. J. et al. Insights into Autism Spectrum Disorder Genomic Architecture and
- Biology from 71 Risk Loci. *Neuron* **87**, 1215–1233 (2015).
- 21 10. Sebat, J. et al. Strong association of de novo copy number mutations with autism.
- 22 Science **316**, 445–449 (2007).
- 23 11. Trost, B. et al. Genomic architecture of autism from comprehensive whole-genome
- seguence annotation. *Cell* **185**, 4409–4427.e18 (2022).
- 25 12. Pinto, D. et al. Convergence of genes and cellular pathways dysregulated in autism
- spectrum disorders. *Am. J. Hum. Genet.* **94**, 677–694 (2014).
- 27 13. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism.
- 28 Nature **515**, 209–215 (2014).
- 29 14. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with
- bipolar disorder. *Nat. Genet.* **51**, 793–803 (2019).
- 31 15. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in
- schizophrenia. *Nature* **604**, 502–508 (2022).
- 33 16. Iakoucheva, L. M., Muotri, A. R. & Sebat, J. Getting to the Cores of Autism. Cell 178,
- 34 1287–1298 (2019).
- 35 17. Singh, T., Neale, B. M. & Daly, M. J. Exome sequencing identifies rare coding variants in
- 10 genes which confer substantial risk for schizophrenia. *MedRxiv* (2020).
- 37 18. Palmer, D. S. et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk
- gene shared with schizophrenia. Nat. Genet. 54, 541–547 (2022).
- 39 19. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders
- 40 parallels polygenic overlap. *Science* **359**, 693–697 (2018).
- 41 20. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD,
- schizophrenia, and bipolar disorder. Science **362**, eaat8127 (2018).
- 43 21. Guan, J., Cai, J. J., Ji, G. & Sham, P. C. Commonality in dysregulated expression of gene
- sets in cortical brains of individuals with autism, schizophrenia, and bipolar disorder.
- 45 Transl. Psychiatry **9**, 152 (2019).
- 46 22. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular

- pathology. *Nature* **474**, 380–384 (2011).
- 2 23. Bowden, N. A., Scott, R. J. & Tooney, P. A. Altered gene expression in the superior
- temporal gyrus in schizophrenia. *BMC Genomics* **9**, 199 (2008).
- 4 24. Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes
- in autism. *Science* **364**, 685–689 (2019).
- 6 25. Wamsley, B. *et al.* Molecular cascades and cell type-specific signatures in ASD revealed by single-cell genomics. *Science* **384**, eadh2602 (2024).
- 8 26. Rajkowska, G. Cell pathology in bipolar disorder. Bipolar Disord. 4, 105–116 (2002).
- 9 27. Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia.
- 10 Nat. Genet. 50, 825-833 (2018).
- 11 28. Daskalakis, N. P. et al. Systems biology dissection of PTSD and MDD across brain
- regions, cell types, and blood. Science **384**, eadh3707 (2024).
- 13 29. Owen, M. J., Legge, S. E., Rees, E., Walters, J. T. R. & O'Donovan, M. C. Genomic findings
- in schizophrenia and their implications. *Mol. Psychiatry* **28**, 3638–3647 (2023).
- 15 30. Ferreira, M. A. R. et al. Collaborative genome-wide association analysis supports a role
- for ANK3 and CACNA1C in bipolar disorder. *Nat. Genet.* **40**, 1056–1058 (2008).
- 17 31. Verpelli, C. & Sala, C. Molecular and synaptic defects in intellectual disability
- syndromes. *Curr. Opin. Neurobiol.* **22**, 530–536 (2012).
- 19 32. Rosenthal, S. B. et al. A convergent molecular network underlying autism and
- congenital heart disease. *Cell Syst* **12**, 1094–1107.e6 (2021).
- 21 33. Shao, X. et al. Copy number variation is highly correlated with differential gene
- expression: a pan-cancer study. BMC Med. Genet. 20, 175 (2019).
- 23 34. Brunetti-Pierri, N. et al. Recurrent reciprocal 1q21.1 deletions and duplications
- associated with microcephaly or macrocephaly and developmental and behavioral
- abnormalities. *Nat. Genet.* **40**, 1466–1471 (2008).
- 26 35. Schleifer, C. H. et al. Effects of gene dosage and development on subcortical nuclei
- volumes in individuals with 22q11.2 copy number variations.
- 28 *Neuropsychopharmacology* (2024) doi:10.1038/s41386-024-01832-3.
- 29 36. Modenato, C. et al. Effects of eight neuropsychiatric copy number variants on human
- brain structure. *Transl. Psychiatry* **11**, 399 (2021).
- 31 37. Moreau, C. A. et al. Mutations associated with neuropsychiatric conditions delineate
- functional brain connectivity dimensions contributing to autism and schizophrenia. Nat.
- 33 Commun. 11, 5272 (2020).
- 34 38. Jacquemont, S. et al. Mirror extreme BMI phenotypes associated with gene dosage at
- the chromosome 16p11.2 locus. *Nature* **478**, 97–102 (2011).
- 36 39. Qiu, Y. et al. Oligogenic Effects of 16p11.2 Copy-Number Variation on Craniofacial
- 37 Development. Cell Rep. 28, 3320–3328.e4 (2019).
- 38 40. Shanta, O. et al. A cross-disorder analysis of CNVs finds novel loci and dose-dependent
- relationships of genes to psychiatric traits. *medRxiv* 2025.07.11.25331310 (2025).
- 40 41. Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic
- 41 Acids Res. **32**, D258–61 (2004).
- 42 42. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference
- resource for gene and protein annotation. *Nucleic Acids Res.* **44**, D457–62 (2016).
- 44 43. Fabregat, A. et al. Reactome pathway analysis: a high-performance in-memory
- approach. BMC Bioinformatics 18, 142 (2017).
- 46 44. Velmeshev, D. et al. Single-cell analysis of prenatal and postnatal human cortical
- development. *Science* **382**, eadf0834 (2023).

- 1 45. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536,
 171–178 (2016).
- 3 46. Hawrylycz, M. J. *et al.* An anatomically comprehensive atlas of the adult human brain transcriptome. *Nature* **489**, 391–399 (2012).
- 5 47. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**,
- 7 15545–15550 (2005).
- 8 48. Nishimura, D. BioCarta. Biotech Softw. Internet Rep. 2, 117–120 (2001).
- 9 49. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a
- network-based method for gene-set enrichment visualization and interpretation. *PLoS One* **5**, e13984 (2010).
- 12 50. Antaki, D. et al. A phenotypic spectrum of autism is attributable to the combined
- effects of rare variants, polygenic risk and sex. Nat. Genet. 54, 1284–1292 (2022).
- 14 51. Dear, R. et al. Cortical gene expression architecture links healthy neurodevelopment to
- the imaging, transcriptomics and genetics of autism and schizophrenia. *Nat. Neurosci.*
- **27**, 1075–1086 (2024).
- 17 52. Markello, R. D. et al. Neuromaps: Structural and functional interpretation of brain
- maps. *Nat. Methods* **19**, 1472–1479 (2022).
- 19 53. Misic, B. et al. Neuromaps: structural and functional interpretation of brain maps.
- 20 Research Square (2022) doi:10.21203/rs.3.rs-1296849/v1.
- 21 54. Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders emerge during adolescence? *Nat. Rev. Neurosci.* **9**, 947–957 (2008).
- Burt, J. B. *et al.* Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. *Nat. Neurosci.* **21**, 1251–1259 (2018).
- Sydnor, V. J. *et al.* Neurodevelopment of the association cortices: Patterns, mechanisms,
 and implications for psychopathology. *Neuron* 109, 2820–2846 (2021).
- 27 57. Hilgetag, C. C. & Goulas, A. 'Hierarchy' in the organization of brain networks. Philos.
- 28 Trans. R. Soc. Lond. B Biol. Sci. **375**, 20190319 (2020).
- 29 58. Mesulam, M. M. From sensation to cognition. *Brain* **121** (Pt 6), 1013–1052 (1998).
- 30 59. Alexander-Bloch, A. F. *et al.* On testing for spatial correspondence between maps of human brain structure and function. *Neuroimage* **178**, 540–551 (2018).
- 32 60. Luo, L., Arizmendi, C. & Gates, K. M. Exploratory factor analysis (EFA) programs in R.
- 33 Struct. Equ. Modeling **26**, 819–826 (2019).
- Karayiorgou, M. & Gogos, J. A. The molecular genetics of the 22q11-associated schizophrenia. *Brain Res. Mol. Brain Res.* **132**, 95–104 (2004).
- 36 62. Kopp, N., McCullough, K., Maloney, S. E. & Dougherty, J. D. Gtf2i and Gtf2ird1 mutation
- do not account for the full phenotypic effect of the Williams syndrome critical region in
- mouse models. *Hum. Mol. Genet.* **28**, 3443–3465 (2019).
- 39 63. Sefik, E. *et al.* Convergent and distributed effects of the 3q29 deletion on the human
- 40 neural transcriptome. *Transl. Psychiatry* **11**, 357 (2021).
- 41 64. Grotzinger, A. D. et al. The landscape of shared and divergent genetic influences across
- 42 14 psychiatric disorders. *medRxiv* 2025.01.14.25320574 (2025)
- doi:10.1101/2025.01.14.25320574.
- 44 65. So, H.-C., Chau, K.-L., Ao, F.-K., Mo, C.-H. & Sham, P.-C. Exploring shared genetic bases
- and causal relationships of schizophrenia and bipolar disorder with 28 cardiovascular
- and metabolic traits. *Psychol. Med.* **49**, 1286–1298 (2019).
- 47 66. Veeneman, R. R. et al. Exploring the relationship between schizophrenia and

- cardiovascular disease: A genetic correlation and multivariable Mendelian
- randomization study. Schizophr. Bull. 48, 463–473 (2022).
- 3 67. Correll, C. U. et al. Prevalence, incidence and mortality from cardiovascular disease in
- 4 patients with pooled and specific severe mental illness: a large-scale meta-analysis of
- 5 3,211,768 patients and 113,383,368 controls. World Psychiatry **16**, 163–180 (2017).
- 6 68. Fagiolini, A. & Swartz, H. A. Cardiovascular disease and bipolar disorder: Risk and
 clinical implications. *Psychiatrist.com* (2012).
- 8 69. Dhanasekara, C. S. et al. Association between autism spectrum disorders and
- 9 cardiometabolic diseases: A systematic review and meta-analysis: A systematic review
- and meta-analysis. *JAMA Pediatr.* **177**, 248–257 (2023).
- 11 70. Canitano, R. & Pallagrosi, M. Autism spectrum disorders and schizophrenia spectrum
- disorders: Excitation/inhibition imbalance and developmental trajectories. Front.
- 13 Psychiatry **8**, 69 (2017).
- 14 71. Dzafic, I. et al. Stronger top-down and weaker bottom-up frontotemporal connections
- during sensory learning are associated with severity of psychotic phenomena.
- 16 Schizophr. Bull. 47, 1039–1047 (2021).
- 17 72. Lyu, X. et al. Weaker top-down cognitive control and stronger bottom-up signaling
- transmission as a pathogenesis of schizophrenia. Schizophrenia (Heidelb.) 11, 36 (2025).
- 19 73. Karayiorgou, M., Simon, T. J. & Gogos, J. A. 22q11.2 microdeletions: linking DNA
- structural variation to brain dysfunction and schizophrenia. Nat. Rev. Neurosci. 11,
- 402-416 (2010).
- 22 74. Jacquemont, S. et al. Genes To Mental Health (G2MH): A Framework to Map the
- 23 Combined Effects of Rare and Common Variants on Dimensions of Cognition and
- 24 Psychopathology. Am. J. Psychiatry **179**, 189–203 (2022).
- 25 75. Urresti, J. et al. Cortical organoids model early brain development disrupted by 16p11.2
- copy number variants in autism. *Mol. Psychiatry* **26**, 7560–7580 (2021).
- 27 76. Nehme, R. et al. The 22q11.2 region regulates presynaptic gene-products linked to
- schizophrenia. *Nat. Commun.* **13**, 3690 (2022).
- 29 77. Kumar, K. et al. Cortical differences across psychiatric disorders and associated common
- and rare genetic variants. *medRxiv* 2025.04.16.25325971 (2025)
- doi:10.1101/2025.04.16.25325971.
- 32 78. Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal component analysis of
- Biobank-scale genotype datasets. *Bioinformatics* **33**, 2776–2778 (2017).
- 34 79. Chen, C.-Y. et al. Improved ancestry inference using weights from external reference
- panels. *Bioinformatics* **29**, 1399–1406 (2013).
- 36 80. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association
- studies identifies sex- and ancestry-specific genetic risk loci. *Nat. Commun.* **10**, 4558
- 38 (2019).
- 39 81. Das, S. et al. Late onset psychosis in a case of 15q11.2 BP1-BP2 microdeletion
- 40 (Burnside-Butler) syndrome: A case report and literature review. SAGE Open Med. Case
- 41 Rep. **12**, 2050313X241229058 (2024).
- 42 82. Markello, R. D. et al. Standardizing workflows in imaging transcriptomics with the
- abagen toolbox. *bioRxiv* (2021) doi:10.1101/2021.07.08.451635.
- 44 83. Kumar, K. et al. Mirror effect of genomic deletions and duplications on cognitive ability
- across the human cerebral cortex. *bioRxiv* 2025.01. 06.631492 (2025)
- doi:10.1101/2025.01.06.631492.
- 47 84. Mowinckel, A. M. & Vidal-Piñeiro, D. Visualization of brain statistics with R packages

ggseg and ggseg3d. Adv. Methods Pract. Psychol. Sci. 3, 466–483 (2020).