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​Abstract​
​Psychiatric conditions share common genes, but mechanisms that differentiate diagnoses​

​remain unclear. We present a multidimensional framework for functional analysis of rare​

​copy number variants (CNVs) across 6 diagnostic categories, including schizophrenia (SCZ),​

​autism (ASD), bipolar disorder (BD), depression (MDD), PTSD, and ADHD (N = 574,965).​

​Using gene-set burden analysis (GSBA), we tested duplication (DUP) and deletion (DEL)​

​burden across 2,645 functional gene sets defined by the intersections of pathways, cell​

​types, and cortical regions. While diagnoses converge on shared pathways, mixed-effects​

​modeling revealed divergence of pathway effects by cell type, brain region, and gene​

​dosage. Factor analysis identified latent dimensions aligned with clinical axes. A primary​

​factor (F1) captured reciprocal dose-dependent effects of DUP and DEL in SCZ reflecting​

​positive and negative effects  in excitatory versus inhibitory neurons and association versus​

​sensory cortex. SCZ and ASD were both strongly aligned with F1 but with opposing​

​directionalities. Orthogonal factors highlighted neuronal versus non-neuronal effects in​

​mood disorders (F2) and differential spatial distributions of DEL effects in ADHD and MDD​

​(F3). H​​igh-impact CNVs at 16p11.2 and 22q11.2 were​​enriched for combinations of​

​cell-type-specific genes involved in pathways consistent with our broader findings.​​These​

​results reveal molecular and cellular mechanisms that are broadly shared across psychiatric​

​traits but differ between diagnostic categories in context and directionality.​

​Background​

​Genes that are associated with psychiatric conditions carry rich information about the​

​timing, location, and nature of the biological processes that contribute to psychopathology​
​1,2​​. The molecular functions of genes point to the​​cellular pathways and regulatory networks​

​that underlie vulnerability to psychiatric disorders. Furthermore, because gene expression is​

​tightly regulated in a cell-type and region-specific manner across the brain, the discovery of​

​genes can also provide insight into the neuroanatomical circuits that influence psychiatric​

​traits. The discovery of hundreds of genes and copy number variations (CNVs) that underlie​

​major psychiatric conditions such as schizophrenia (SCZ)​​3–6​ ​and autism spectrum disorder​

​(ASD)​​7–11​ ​has implicated a variety of pathways including​​synaptic function, chromatin​

​regulation, cell signaling, cytoskeletal proteins, and DNA and RNA binding proteins that​

​regulate neurodevelopment​​3,12–18​​. Similar pathways​​have been implicated by transcriptome​

​characterization of post-mortem brains from case samples of idiopathic ASD, SCZ and bipolar​

​disorder (BD)​​19–23​​.  Genes implicated in psychiatric​​diagnoses are also enriched in specific​

​neural cell types. RNA sequencing in postmortem samples have identified neuronal and glial​

​signatures associated with ASD​​24,25​ ​and differences​​in the distributions of glial and neuronal​

​cells in mood disorders​​26​​. Analysis of GWAS associations​​has found enrichment of SCZ​​27​​,​

​major depressive disorder (MDD) and post-traumatic stress disorder (PTSD)​​28​ ​associations in​

​mature excitatory and inhibitory neurons.​
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​Despite significant progress in identifying risk genes and pathways in psychiatric conditions,​

​there remains a limited understanding of how neural processes relate to specific psychiatric​

​traits or diagnoses. Many of the same biological pathways, such as those described above,​

​have been repeatedly associated with multiple diagnostic categories, including SCZ​​5,15,29​​,​

​BD​​14,30​​, ASD​​16​​, intellectual disability​​31​ ​and congenital​​heart disease​​32​​. Thus, functional​

​convergence that is evident from pathway enrichment analysis of the associated genes​

​highlights broad biological themes but lacks the resolution to differentiate neural​

​mechanisms that differ between diagnostic categories.​

​CNVs have been shown to exert dose-dependent effects on a range of complex traits,​

​including gene expression​​33​​, head size​​4,34​​, brain​​volume​​35,36​​, functional connectivity​​37​​, body​

​mass​​38​​, craniofacial morphology​​39​​. As described in​​our companion paper​​40​​, this pattern​

​extends to psychiatric traits, where reciprocal duplications (DUPs) and deletions (DELs) of​

​genes show dose-dependent effects and diverge in their genotype-phenotype associations.​

​A more detailed functional analysis of gene-dosage effects could clarify how alterations in​

​molecular pathways contribute to psychiatric traits. In this study, we developed and applied​

​an integrated framework to examine how gene-dosage effects on pathways, cell types, and​

​brain regions relate to clinical diagnoses (​​Fig. 1​​).​​Key elements of this approach include​

​accounting for (1) directionality of gene-dosage effects and their distribution within (2)​

​neural cell-types and (3) cortical brain regions, and we perform a comparative analysis​

​across multiple diagnostic categories.​

​Gene set association of rare CNVs in 6 psychiatric conditions​

​We leveraged large-scale rare CNV data (population frequency <2%) from the Psychiatric​

​Genomics Consortium, comprising genome-wide microarray data from 574,965 individuals​

​(133,007 cases and 441,958 controls) across six major psychiatric disorders: schizophrenia​

​(SCZ), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder​

​(MDD), post-traumatic stress disorder (PTSD), and attention-deficit/hyperactivity disorder​

​(ADHD). CNVs were uniformly processed through a centralized pipeline for calling and​

​quality control. Only rare CNVs (frequency <2%) were retained for analysis. Individuals​

​represented diverse ancestral backgrounds, with 89.3% of European ancestry. This dataset​

​enabled us to apply our multidimensional framework to identify distinct molecular and​

​cellular features of brain function associated with each psychiatric diagnosis.​

​We assembled a primary catalogue of 2,645 gene sets that capture neurobiological features​

​across multiple levels of organization. These included 2,453 molecular pathways from public​

​databases​​41–43​​. In addition, differential expression​​in single-cell expression data was analyzed​

​to create gene sets for 12 cell types from human fetal and adult brain (ranging from second​

​trimester to 54 years of age)​​44​​, and differential​​expression in bulk tissue was analyzed to​

​create 180 anatomic regions of cerebral cortex from the Allen Human Brain Atlas (AHBA)​​45​

​46​​(​​Table S1​​).​
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​We investigated the association of functional gene sets with psychiatric diagnoses using​

​gene-set burden analysis (GSBA)​​5​​.​ ​Associations detected​​by GSBA capture the enrichment​

​of variants in functionally-related genes in cases. However, GSBA is not equivalent to a​

​gene-set enrichment test (e.g., Subramanian et al., 2005​​47​​). Rather, it is a statistical genetics​

​approach that quantifies the effect size of rare-variant burden across a defined set of genes​

​(e.g. a GO term) in cases and controls (​​Fig. 1​​). For​​each gene set, we tested the association​

​of the aggregate DEL or DUP counts across genes with case-control status by logistic​

​regression controlling for population structure, sex and overall genome-wide CNV burden​

​(collapsed across all out-of-category genes). Gene-set summary statistics were generated for​

​each genotyping platform in each diagnostic category, and results were combined by​

​meta-analysis. Combined results were corrected for multiple testing with​

​Benjamini-Hochberg False Discovery Rate (BH-FDR<5%,​​Fig. S1​​).​

​Fig. 1| Investigating association of pathways, cell types and brain regions by Gene Set Burden Analysis​

​(GSBA).​​Gene sets were derived for Pathway (from GO,​​KEGG, REACTOME, and BioCarta), Cell type (from single​

​cell study, Velmeshev et al.), and Cortical regions (from Glasser parcellation of the Allen Brain Atlas).​

​Case-control association of CNV burden collapsed across gene sets, was then tested by logistic regression and​

​meta-analysis was performed across genotyping platforms. Functional gene set associations were tested for 6​

​major psychiatric conditions (ASD, ADHD, SCZ, PTSD, MDD, BD).​

​Significant functional burden associations were detected for a total of 787 gene sets in one​

​or more conditions, including SCZ (671 gene sets) and ASD (331 gene sets), ADHD (52 gene​

​sets), BD (122 gene sets) and MDD (3 gene sets) (​​Table​​S2​​). Comparing summary statistics​

​between trans-ancestry analysis and the European-only subset, we found a high level of​

​concordance in the z-statistics between single ancestry (European subset) and​
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​trans-ancestry results across the 6 psychiatric conditions (beta-coefficients are between 0.9​

​and 1 with median beta-coefficient = 0.97;​​Fig. S2​​).​​All results described below are from the​

​trans-ancestry summary statistics, which has the greatest statistical power.​

​Common neurodevelopmental pathways are implicated in multiple diagnostic categories​

​Pathway gene sets were compiled from Gene Ontology (GO)​​41​​, KEGG​​42​​, Reactome​​43​​, and​

​BioCarta​​48​​, with size ranging from 50 to 500 genes.​​589 gene sets were associated with one​

​or more conditions (​​Table S3​​). Using Enrichment Map​​49​​, overlapping gene sets implicated by​

​CNVs were grouped into 19 functionally-related clusters representing canonical pathways​

​such as MAPK signaling, nervous system development, synaptic transmission, chromatin​

​regulation, etc. (​​Fig. 2a, Table S4​​). To summarize​​the pathway results, effect sizes were then​

​estimated for the 19 gene sets in 6 diagnostic categories by GSBA regression (​​Fig. 2b, Table​

​S5​​)​

​Fig. 2|​ ​Rare CNVs association analysis results in​​molecular pathways and neuronal cell types. (​​a​​) Enrichment​​map showing​

​clusters of functional modules that are significantly associated with any condition. CNV associations are color-coded as a​

​portion with a node where red indicates a DEL association in ASD,  orange indicates a DEL association in SCZ, blue indicates​

​a DUP association in SCZ, and yellow indicates a DEL association in ADHD. Gene-sets not forming a cluster of 3 or more​

​members were excluded. Gene set clusters are listed in​​Table S4​​. (​​b​​) The heatmap represents the results​​at the​

​pathway-cluster level, with color indicating z-score from meta-analysis.​​(​​c​​) A UMAP plot displays cell​​clusters colored​

​by prenatal (teal) and postnatal (red) periods. (​​d​​)​​Heatmaps show association results at the cell type level with​

​color indicating z-score, where red represents a higher burden of CNVs in cases and blue represents a depletion​

​of CNVs burden in cases. An asterisk indicates statistically significant associations (q-value <0.1). Summary​

​statistics of the initial primary gene sets and for the final set of pathway clusters are in​​Tables S3​​,​​and​​S5​

​respectively.​
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​As expected, CNV burden associations were strongest in ASD and SCZ and were attenuated​

​in other adult onset diagnoses, BD, ADHD, MDD, and PTSD. Many of the same functional​

​gene sets were implicated in ASD and SCZ, including MAPK and other cell-signaling​

​pathways, chromatin regulation, and synaptic transmission. Pathway signals in ASD were​

​driven by significant DEL associations across 10 pathways. SCZ, by contrast, showed DUP​

​associations in 9 functional gene sets such as chromatin regulation, MAPK signaling, axonal​

​transport, and DEL associations in a different set of 9 pathways including synaptic​

​transmission, axon guidance, and calcium signaling. The finding that pathway associations in​

​SCZ differ by gene dosage is notable in light of the dose-dependent CNV effects reported for​

​SCZ and other diagnoses in our companion study​​40​​.​

​Gene set burden associations implicate neuronal and non-neuronal cell types​

​Twelve cell-type gene sets were derived from single-cell RNA-sequencing of human cortex​

​(prefrontal, cingulate, insula, motor, and temporal regions) spanning prenatal (5-9 months)​

​and postnatal (0-54 years of age) developmental stages, based on the dataset from​

​Velmeshev et al.​​44​​. Starting from eight major cell​​type clusters defined in the original study,​

​we refined these to capture key developmental distinctions, resulting in the following gene​

​sets: five prenatal cell types - 1) glial progenitor cells (GpcPre), 2) oligodendrocyte precursor​

​cells (OpcPre), 3) inhibitory neurons (InNeuPre), 4) excitatory neurons (ExNeuPre), and 5)​

​astrocytes (AstPre); and seven postnatal cell types - 6) vascular cells (VascPost), 7) OpcPost,​

​8) oligodendrocytes (OligoPost), 9) microglia (MgPost), 10) inhibitory neurons (InNeuPost),​

​11) excitatory neurons (ExNeuPost), and 12) astrocytes (AstPost) (​​Fig. 2c​​). We observed​

​several cell type associations with diagnostic categories (​​Fig. 2d, Table S3​​). ASD was​

​associated with DEL burden in ExNeuPre, consistent with loss-of-function variants in ASD​

​genes being enriched in fetal excitatory neurons​​7,50​​.​​SCZ showed DUP association in​

​ExNeuPre, microglia, and neurovascular cells and DEL association in GpcPre. BD showed DUP​

​association in ExNeuPost and OligoPost and DEL association in ExNeuPre.​

​Diagnoses differ in the distribution of gene-set associations  between sensorimotor and​

​association cortex​

​Spatial variation in gene expression across the cortex reflects region-specific regulation​

​beyond differences in cell type composition​​51​​. The​​primary gradient of gene expression​

​(PC1) in the AHBA follows a sensorimotor-to-association (S-A) axis, spanning from primary​

​sensory (visual, auditory, sensorimotor cortex) areas to transmodal (frontal, temporal)​

​regions ​​51–53​​. This axis aligns with several cortical​​hierarchies, including developmental timing​
​54–56​​, myelination​​54,55​​, anatomical projections​​57​​,​​and functional specialization ​​58​​. Given its​

​close correspondence with the S-A axis​​51​​, we refer​​to AHBA PC1 as the S-A axis throughout​

​the paper.​

​To investigate how gene dosage effects are distributed across the cortex, we defined gene​
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​sets for each of the 180 cortical regions from Glasser et al. ​​45​​. Gene expression was​

​z-transformed across regions, and highly expressed genes (z>1) were assigned to each set of​

​180 regions. DEL and DUP burden was tested across cortical gene sets within each diagnosis.​

​In total, 177 significant associations were identified. DEL and DUP associations are visualized​

​on Glasser cortical maps (​​Fig. 3a, c​​), with effect​​sizes (z-scores) represented by a red-blue​

​scale. We then tested whether spatial patterns of effect sizes aligned with the S-A axis using​

​the SPIN test ​​59​ ​with 10,000 permutations and Kendall​​correlation.​

​CNV effect sizes varied across the cortex, and in several diagnostic categories, they showed​

​significant, but divergent, correlations with the S-A axis. DEL effect sizes were positively​

​correlated with the S-A axis in MDD, ADHD, and SCZ, indicating enrichment of DEL signal in​

​sensorimotor cortex, while BD showed a negative correlation, indicating a relative​

​enrichment of DEL signal in association cortex (​​Fig.​​3b​​;​​Table S3​​). DUP associations were​

​negatively correlated with the S-A axis in SCZ, ASD, and PTSD (​​Fig. 3c,d),​​indicating an​

​enrichment in the association cortex. Our results suggest that the spatial distribution of gene​

​dosage effects differs by diagnosis. Similar correlations were observed with other functional​

​and anatomical gradients that are also aligned with the S-A axis (e.g., T1w/T2w ratio​

​reflecting myelin content;​​Fig. S3​​)​​52​​.​
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​Fig. 3|​ ​Rare (​​a​​) DEL and (​​c​​) DUP association analysis​​results of the cortical brain regions in the 6 conditions.​
​Color indicates the association level (z-score) with red indicating the CNV association with the cases, while blue​
​indicates the depletion of CNVs in cases (​​Table S3​​).​​Correlation results between CNV associations in (​​b​​)​​DEL and​
​(​​d​​) DUP against the dominant transcriptomic brain​​gradient (PC1 of AHBA). Each circle represents a brain​
​region gene set. Kendall’s Tau and corresponding q-value are shown in the title of each scatterplot. Solid​
​diagonal trend line indicates significant correlation (q​​SPIN​​<0.05). The cortical map at the top left corner​
​illustrates the transcriptomic gradient from PC1 AHBA.​
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​Association of pathways with diagnosis varies by cell type and gene dosage​

​Our initial findings demonstrate that there are divergent genetic influences between​

​different diagnostic categories when we stratify genetic effects by gene dosage and brain​

​region. These findings highlight a principle that is somewhat obvious in retrospect. The​

​multidimensional nature of psychopathology demands a multidimensional data analytic​

​approach.​

​To characterize with more granularity how CNV effects are distributed in the brain, we​

​investigated gene-dosage effects at the intersections of pathways, cell types, and brain​

​regions. Pathway gene sets were intersected with cell types to create non-overlapping​

​subsets (e.g.,​​Chromatin_ExNeu​​and​​Chromatin_InNeu​​;​​Fig. 4a​​). Similarly, the transcriptome​

​was divided into sensorimotor and association gene sets based on the correlations of​

​individual genes with the S-A axis in the AHBA (76.29% of genes showed a nominally​

​significant positive or negative correlation with PC1,​​Tables S6-S7​​). Pathways were​

​intersected with these to create 2 region-specific subsets of each pathway (e.g.,​

​Chromatin_Sensori​​,​​Chromatin_Assoc​​). GSBA was then​​performed on two-way and​

​three-way intersections of pathways (N = 19), cell types (N = 12), and brain regions (N = 2),​

​including gene sets of size ≥30. Each gene set result was labeled with four factors: pathway,​

​cell type, brain region, and dosage (​​Table S8​​).​

​We then evaluated which levels of biological organization best explain variation in gene-set​

​effects within each diagnosis. We performed linear modeling on effect sizes of stratified​

​gene-sets (z-scores) with different combinations of pathway, cell type, brain, and dosage as​

​independent variables. For each diagnostic category, variance explained (R²) in summary​

​statistics was calculated for main effects and interactions of these factors. Of all 2-way​

​combinations, pathway and cell type explained the greatest variance (35.3% on average​

​across diagnoses,​​Fig. 4b; Table S9​​). A full model​​that further stratified gene sets by dosage​

​explained a majority of the variance (80.1% on average).  The pathway×celltype×dosage​

​interaction consistently explained the largest proportion of variance (​​Fig. 4c; Table S9​​),​

​explaining half of the effect of the full model. This result highlights the importance of​

​cell-type-specific and dose-dependent pathway effects across psychiatric conditions. Model​

​fits improved by 7-20% when the brain region was included in the models (​​Fig. 4b,c; Tables​

​S9-S10​​), suggesting that spatial variation in pathway​​expression also explains a proportion of​

​variance.​
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​Fig. 4| Associations of pathways with psychiatric traits vary by cell-type and gene dosage.​​(​​a​​)​​Schematic​​illustrating how​
​gene sets were defined by intersecting pathway, cell type, and cortical region dimensions. Example intersections include​
​Chromatin-ExNeu, Chromatin-Assoc, ExNeu-Assoc, and Chromatin-ExNeu-Assoc. (​​b​​) Full model R² estimates​​showing the​
​total variance in gene-set z-scores explained by main effects and interaction terms for each diagnosis. Models included​
​pathway, cell type, brain region, dosage, and all combinations of two-way and three-way interactions. (​​c​​)​​R² estimates for​
​individual interaction terms, quantifying the contribution of each interaction to the explained variance. The​
​pathway×celltype×dosage interaction consistently explains the largest proportion of variance across diagnoses, highlighting​
​the importance of dosage-sensitive and cell-type-specific pathway effects (Tables S9-S10).​

​Diagnostic categories are differentiated based on gene-dosage effects in pathways by cell​

​type and brain region​

​To elucidate where gene-dosage effects converge at the intersection of pathways, cell types,​

​brain regions, and psychiatric traits, we performed exploratory factor analysis  (EFA)​​60​ ​of​

​functional gene sets to identify latent factors that correspond to different gene-trait​

​relationships. Genetic correlations of DEL and DUP associations across 6 diagnostic​

​categories were estimated based on gene-set summary statistics (​​Fig. 5a; Table S11​​). Factor​

​analysis of gene-set summary statistics was performed to extract latent dimensions of​

​genetic effects, and a three-factor model was optimal (​​Fig. S4​​). Factor​​F1​​captured​
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​dose-dependent effects in SCZ and BD (DUP positive, DEL negative) and dose-aligned effects​

​in ASD (DUP positive, DEL positive) in shared gene sets.​​F2​​captured DUP effects shared by​

​mood disorders and PTSD.​​F3​​captured DEL effects shared​​by MDD, ADHD and SCZ.​

​Importantly, genetic correlations between diagnostic categories show greater contrast when​

​DEL and DUP results for each disorder were treated as independent components (​​Table S11​​)​

​compared to when all gene set tests for DEL and DUP were aligned between disorders (​​Fig.​

​S5g;​​Table S12​​). This result is consistent with diagnostic​​categories having involvement of​

​common functional processes with sometimes opposing directionality. Loadings of DEL and​

​DUP effects onto the 3 factors yields a unique profile for each diagnostic category (​​Fig. 5b;​

​Table S13​​).​
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​Fig. 5| Differentiation of diagnostic categories based on gene-dosage effects in pathways by cell type and​

​brain region.​​(​​a​​)​​Genetic correlations between diagnostic​​categories when each diagnosis-dosage combination​
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​is treated as an independent component, see also​​Table S11,​​*p<0.05) **q<0.05). Diagnosis-dosages with​

​factor loadings >0.25 were grouped and labeled to highlight psychiatric traits contributing to F1, F2 and F3​​.​​(​​b​​)​​:​

​Factor loadings of DEL and DUP for disorders reveal a distinct profile for each diagnostic category.​​(​​c, g, k​​)​​Gene​

​set-factor scores for the three factors, cell types and pathways were ordered using a simple sign-based​

​bi-clustering algorithm (see methods) (Table S14)​​.​ ​(​​d​​,​​h​​,​​i​​) Factor scores are representative of dose-dependent​

​effects of genes. Scatterplots of gene set effect sizes (z-score) are shown for the top 2 diagnosis-dosage​

​groupings with highest absolute factor loadings for factor F1, F2, and F3, and factor score of each gene set is​

​indicated using the same color scale as in panels c,g,k.  Solid trend lines indicate significant correlation between​

​the diagnosis-dosage pair. (​​e,j,m​​) Factor analysis​​of gene sets with genome-wide significant loci removed​

​yielded results with highly concordant gene set factor scores (​​e,f,i,j,m,n​​; tau_F1=0.45, tau_F2=0.53,​

​tau_F3=0.32, p<2.2e-16; Table S14 ), demonstrating that these patterns are not attributable to a select subset​

​of major loci.​

​The factor scores of functional gene sets show the relationships of neural processes to these​

​latent dimensions. After a sign-based bi-clustering of the matrix, a structured pattern shows​

​dose-dependent effects on pathways within cell types.​​F1​​in particular captures distinct​

​clusters that represent the mirror-opposite effects of DUP and DEL seen in SCZ and other​

​diagnostic categories (​​Fig. 5b​​).​​Positively scoring​​gene sets​​(​​Fig. 5c​​, upper left quadrant),​

​which correspond to DUP associations in SCZ (​​Fig.​​5d​​), were enriched for core regulatory​

​processes (cell cycle, MAPK, chromatin) and metabolic pathways expressed in postnatal​

​neurovascular cells (VascPost), excitatory neurons (ExNeuPost), and microglia (MgPost) (​​Fig.​

​S6​​).​​Negatively scoring gene sets​​(​​Fig. 5c​​, lower​​right quadrant), which reflect DEL​

​associations in SCZ (​​Fig. 5d​​), were enriched for calcium​​signaling, axon guidance, and​

​translation pathways expressed in inhibitory neurons and glia. F1 Factor scores also reveal​

​divergent effects on synaptic transmission by cell type, with DUP associations concentrated​

​in excitatory neurons and DEL associations in inhibitory neurons, a pattern that is consistent​

​with a shift in excitatory-inhibitory balance. To assess whether these patterns might be​

​attributable to strong signals from a select subset of loci, we repeated GSBA (​​Table S8​​) and​

​factor analysis (​​Fig. 5e​​) after removing 18 loci that​​reached genome-wide significance (GWS)​

​in our companion study​​40​​. The results showed highly​​concordant genetic correlations (​​Fig.​

​S5c​​), factor solution and factor loadings (​​Fig. S5f​​),​​and gene-set factor scores (​​Fig. 5f,i,l​​).​

​Thus the three factors derived in Figure 5 are not driven by a select subset of loci, and​

​appear to be generalizable to CNVs genome wide. Similar clusters of pathway-cell type​

​associations were evident in F1 (​​Fig. 5e​​), with the​​exception of the glial precursor cell type​

​(GpcPre)(​​Fig. 2d​​). Lastly, F1 showed modest enrichment​​of gene set factor scores in​

​Association cortex, a result that is consistent with the inverse dose-response of DEL (​​Fig.​

​3b​​)and DUP (​​Fig. 3d​​) effects along the S-A axis. Supplementary​​figures are provided that​

​illustrate all gene-set associations (​​Fig S6A​​), the​​subsets that are captured by each of the​

​latent factors (​​Fig. S6B​​), and functional terms that​​are enriched within each factor (​​Fig. S6C​​).​

​The orthogonal​​F2​​factor showed divergent positive​​(associated with cases) and negative​

​(associated with controls) effects in developmental signaling (cell-cycle, MAPK, GTPase​

​signaling) pathways in non-neuronal and neuronal cell types, respectively (​​Fig. 5g,i​​).​
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​Positively-scoring gene sets​​, which correspond to positive DUP associations in mood​

​disorders (​​Fig. 5h​​,​​Fig. S6b​​), include nervous system​​development and metabolic pathways​

​concentrated in microglia (MgPost), and neurovascular cells (VascPost).​​Negatively-scoring​

​gene sets​​correspond to negative DUP associations​​in similar pathways in neuroectodermal​

​lineages (ExNeuPre, ExNeuPost, InNeuPre, AstPost;​​Fig. 5f,g​​). The patterns in F2 suggest that​

​DUP effects in mood disorders are concentrated in core regulatory processes in​

​non-neuronal cell types, while DUP effects in core regulatory pathways may be tolerated (or​

​protective) in neurons with respect to diagnoses of MDD and BD. Thus, DUP effects on​

​regulatory pathways in postnatal excitatory neurons (e.g. GTPase_ExNeuPost,​

​CellCycle_ExNeuPost, Chromatin_ExNeupost) are a point of divergence between F1 and F2​

​that represents neural processes that are positively associated with SCZ and ASD and not​

​associated with mood disorders (​​Fig. S6B-C​​).​

​F3​​was characterized by positive loadings of MDD-DEL​​and ADHD-DEL (​​Fig. 5b; Fig. S6b​​).​

​Positively-scoring gene sets​​consisted of DEL effects​​in Cell-signaling and neurotransmission​

​(SynapTrans, VesiclTraff) in inhibitory neurons (InNeuPre, InNeuPost).​​Negatively-scoring​

​gene sets​​were broadly distributed across regulatory​​and metabolic pathways in microglia​

​and neurovascular cells.  Notably, nearly all (18/19) canonical pathways showed strong​

​positive F3 factor scores in the sensorimotor cortex (​​Fig. 5i,k​​), consistent with the positive​

​correlation of MDD-DEL and ADHD-DEL with the S-A axis in​​Figure 3a-b​​. Thus, F3 captures​

​differential DEL effects in synaptic and regulatory pathways that vary along the S-A axis and​

​in cell-type populations that align with this cortical expression gradient, such as inhibitory​

​interneurons​​55​​.​

​High-impact CNVs have a variety of cell-type specific gene-dosage effects​

​For CNV loci with the largest effect sizes on psychiatric traits, including reciprocal CNVs at​

​16p11.2, and 22q11.2​​40​​, clinical phenotypes are likely​​driven by the combined effects of​

​multiple genes within each region​ ​39,61–63​​. Results​​from this study further suggest that a CNV​

​may exert its influence through distinct pathway effects in multiple cell types.​

​Duplication of 16p11.2 BP4-BP5 confers significant susceptibility to SCZ and BD, and Deletion​

​is associated with ASD (​​Fig. 6a​​), consistent with​​some hallmarks of F1.  Single-cell expression​

​datasets​​44​ ​confirm that expression of genes within​​the locus differs significantly by cell type​

​(​​Fig. 6b​​), A network was constructed representing​​cell-type expression of CNV genes and​

​pathways  (​​Fig. 6c​​), highlighting several pathway-cell​​type effects that are consistent with​

​positively-scoring gene sets on factor F1 including several genes tied to regulatory pathways​

​in neurovascular cells  (MAPK3, ALDOA, MVP, TMEM219, TAOK2) and microglia (​​CORO1A​​,​

​INO80E​​) as well as MAPK signaling and synaptic plasticity​​in postnatal excitatory neurons​

​(YPEL3 PRRT2).​
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​The 22q11.2 A-D locus has mirror positive and negative effects of DEL and DUP respectively​

​on SCZ susceptibility (​​Fig. 6d​​), which is also a hallmark of F1. Pathway-cell type effects in​

​22q11.2 are consistent with negatively-scoring gene sets on F1, including chromatin,​

​translation and GTPase signaling in fetal excitatory neurons (SLC25A1, MRPL40, CLTCL1,​

​THAP7), axon guidance and endosome recycling in postnatal excitatory neurons (RTN4R,​

​POI4KA, ZDHHC8) and calcium signaling in postnatal inhibitory neurons (P2RX6)(​​Fig. 6e,f​​). As​

​mentioned previously, gene set effects listed here, persist after removing all genome-wide​

​significant loci. Thus, the functional gene sets enriched within major CNV loci generalize to​

​gene-dosage effects  in the rest of the genome.​

​Fig. 6|​​Cell-type specific expression of genes within​​major CNV loci 16p11.2 BP4-BP5 and 22q11.2 A-D suggests that the​

​functional influence of a CNV in the brain may be driven by distinct pathway effects across a variety of cell types.​​CNV​
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​associations displayed in (​​a​​) and (​​d​​) were obtained from Shanta et al.​​40​ ​Colors indicate the association direction and effect​

​size (z-score), and asterisks indicate FDR<10% results. (​​b​​) and (​​e​​) heatmaps show log2 fold-change of cell​​type expression of​

​the genes within each locus. The colors indicate the differential expression level. CNV-gene-gene-set networks in (​​c​​) and (​​f​​)​

​display the CNV genes and their participation in the pathway-cell-type stratified gene sets. Shapes represent different​

​entities of the network where the big circle in the middle is a GWS locus, peripheral circles are genes in the locus. A gene​

​may be linked to one or more pathways (diamond) and at the end of the pathway, a cell type (square) is connected to​

​indicate the gene membership of one or more stratified pathways of the same cell type. The color of diamond nodes​

​indicates the group of pathways.​

​Discussion​

​We present an integrative framework for characterizing the functional convergence and​

​divergence of rare genetic influences on mental health traits. Using a statistical genetic​

​approach,  gene set burden analysis (GSBA)​​5​​, we analyze​​the association of aggregate rare​

​CNV burden in functional gene sets with diagnostic categories. A key element was to apply a​

​multidimensional approach that quantified divergent effects of DEL and DUP in gene sets​

​that represent the intersections of molecular pathways, neural cell types and cortical​

​regions. This approach yields key insights into the neural basis of psychopathology. We​

​demonstrate that, while major diagnostic categories converge on common molecular​

​pathways, they diverge in the cellular context, spatial distribution, and directionality of​

​genetic effects.​

​Gene-set burden tests identified 19 neurodevelopmental pathways, highly overlapping​

​between ASD and SCZ, that were consistent with prior CNV​​3,5​​, WES​​17,18​​, and GWAS​​15,64​

​studies. These included pathways involved in neuronal signaling, GTPase and receptor​

​mediated cell signaling, chromatin, translation, and metabolism. Cell-type associations​

​included fetal excitatory neurons in ASD; excitatory neurons and oligodendrocytes in BD; and​

​postnatal excitatory neurons, microglia, and neurovascular cells in SCZ. The involvement of​

​neurovascular gene sets is notable given prior links of SCZ​​65–67​​, BD​​68​ ​and ASD​​32,69​ ​to​

​cardiovascular disease . However, comparing lists of pathways and cell types does not reveal​

​clear relationships between neural functions and diagnostic categories.​

​A key insight, originating from our companion paper​​40​​, is the dose-dependent effect of​

​genes in SCZ and other diagnostic categories, evident by the inverse correlation of effect​

​sizes for reciprocal DEL and DUP of the same genes. Stratification of pathway associations by​

​gene dosage showed that pathway associations, particularly in SCZ, differ by dosage.​

​SCZ-DUP effects were concentrated  in core regulatory pathways and DEL effects in neuronal​

​signaling.​

​In addition, incorporating spatial patterns of gene expression into GSBA revealed differential​

​genetic effects across brain regions. In several diagnostic categories, the spatial distribution​

​of gene dosage effects aligned with the S-A axis, a cortical gene expression gradient,​

​extending from transmodal association areas (frontal, temporal cortex) to sensorimotor​

​regions (visual, auditory cortex), and spatial distributions differed by diagnostic category,​
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​with DEL effects in MDD, ADHD and SCZ enriched in sensorimotor cortex, while DEL effects​

​BD and DUP effects in ASD, PTSD and SCZ were enriched in association cortex.​

​These findings highlight how stratification of genetic effects by context and gene dosage​

​allow for the differentiation of diagnostic categories. To determine where genetic effects​

​converge and diverge at multiple levels, we investigated gene-dosage effects in the​

​interactions of pathways, cell types and cortical regions. Mixed-effects modeling​

​demonstrated that associations of gene sets captured the largest share of variance when​

​pathways were stratified by cell type, and dosage. Spatial information also contributed a​

​modest additive effect representing differential genetic effects along the S-A axis, as​

​observed for MDD-DEL and ADHD-DEL (​​Fig. 3​​).​

​Factor analysis revealed three latent dimensions of gene-dosage effects (F1, F2, F3) that​

​capture shared and distinct genetic architectures across diagnoses. A major factor​​F1​

​captured a set of neural processes that have a dose-dependent relationship to SCZ (DUP​

​positive, DEL negative) and dose-aligned relationship to ASD (DUP positive, DEL positive),​

​with​​distinct pathway-cell type combinations at opposing​​ends of the dose-response curve​​.​

​SCZ-DUP associations in cell-signaling (MAPK, cell-cycle) and metabolic pathways were​

​concentrated in postnatal excitatory neurons and neurovascular cells. SCZ-DEL associations​

​in neuronal signaling (synaptic, calcium) were concentrated in inhibitory interneurons,​

​consistent with an imbalance of excitation and inhibition​​70​​. Dose-dependent effects in SCZ​

​also correlated with the S-A axis (Fig. 3) with DUP effects aligned to the association cortex​

​and DEL effects in sensorimotor regions. This pattern suggests that one major dimension of​

​psychosis consists of negative effects on inhibitory activity (disinhibition) in sensory​

​processing and positive dysregulation of excitatory processes in frontal/temporal regions.​

​Thus, our genetic findings could inform studies of neurophysiology in schizophrenia​ ​71,72​​.​

​Notably, ASD contrasts with SCZ in the directionality of effects in F1. In contrast to the​

​dose-dependent effects in SCZ, In ASD, opposing effects of DUP and DEL are concentrated​

​within the same neural processes. This fact could reflect distinct linear and non-linear  dose​

​responses for the cognitive traits underlying psychosis and social behavior respectively.​

​Additional factors captured orthogonal neural processes associated with mood disorders​

​and ADHD.​​F2​​implicated cell-type specific effects​​in mood disorders consisting of divergent​

​positive and negative effects on cell-signaling between non-neuronal and neuronal cells​

​respectively, the latter being a point of divergence from SCZ and ASD. These findings​

​represent a possible genetic basis for differences in the densities of neurons and glia that​

​have been reported in postmortem studies of BD and MDD​​26​​.​ ​F3​​reflected differential DEL​

​effects along the S-A axis capturing broad sensorimotor enrichment in ADHD and MDD​

​consisting of synaptic and regulatory pathways in cell-type populations that align with this​

​cortical gene expression gradient, such as inhibitory interneurons​​55​​.​
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​We also show that specific high-impact CNVs are enriched for combinations of​

​cell-type-specific genes involved in pathways consistent with our broader findings. 16p11.2​

​BP4-BP5​​4​ ​represents a genomic region that is enriched​​for multiple functional gene sets at​

​the positive end of factor F1 (cell signaling pathways in ExNeuPost and VascPost). Conversely​

​22q11.2 A-D​​73​ ​is enriched for  functional gene sets​​at the negative end of F1, such as​

​regulatory pathways in ExNeuPre and calcium signaling InNeuPost. These results suggests​

​that the large effects of an individual CNV may result from the combined impact of genes​

​acting across multiple neural processes. Thus, 16p11.2 and 22q11.2 CNVs are monogenetic​

​conditions that could serve as models for the dose-dependent effects of the major factor F1.​

​High-risk CNVs, such as these represent patient groups that can be recruited for deep​

​phenotypic characterization​​74​ ​and parallel functional​​characterization of neural processes in​

​brain organoid models​​75,76​​. Thus the findings from​​this study can be directly applied in​

​clinical and translational studies of CNVs.​

​Our results provide a genetic basis for previous findings from other NIH-funded​

​collaborations such as the PsychEncode consortium. Consistent with findings from Gandal et​

​al., functional analysis of CNVs shows that core molecular pathways are shared by multiple​

​diagnostic categories, such as ASD, SCZ, BD and MDD including synaptic transmission and​

​neuronal signaling pathways​​19​ ​and there are divergent​​effects in neuronal and non-neuronal​

​cell types​​20​​. Considering just one level of biological​​organization at a time, such as pathways,​

​the patterns that emerge from PsychEncode, GWAS, WES and CNVs are dominated broadly​

​by  “functional convergence” that seemingly spans all diagnostic boundaries. However, when​

​genomic approaches take into consideration the joint influences of cell types, spatial​

​distribution and directionality (dosage) of the pathway effects, distinct mechanisms emerge​

​that underlie different dimensions of psychopathology.​
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​Data and code Availability​

​A WDL workflow containing all steps of CNV calling, QC and CNV-GWAS and meta-analysis​

​code is under construction and will be released on the PGC CNV Github in conjunction with​

​this publication (​​https://github.com/orgs/psychiatric-genomics-consortium/teams/cnv​​).​

​Analysis code for GSBA and downstream analyses (​​https://github.com/naibank/PGC_GSBA​​)​

​Gene sets, see Table S1, Gene-set summary statistics, see Table S3.​

​Raw genotype and intensity files are available on subset of the cohort​

​PGC dbGAP datasets​

​https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/collection.cgi?study_id=phs001254.v1.p​
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​Methods​

​1. Participants and CNV data​

​The CNV subgroup of the Psychiatric Genomics Consortium (PGC) works in collaboration​

​with principal investigators from many labs to obtain large sample sizes of microarray data​

​and analyze them using a centralized pipeline. We acquired microarray intensity files from​

​GWAS for a total of 574,965 samples that included data from cases and controls for 6​

​diagnostic categories (Table S1 in our companion paper​​40​​).​​These samples were genotyped​

​on 25 platforms across 4 genome builds. Data from Illumina was collected as either raw​

​intensity data (IDAT) files or final report files while data from Affymetrix was collected as CEL​

​files. To harmonize data, probes for newly acquired datasets were lifted over to GRCH38 for​

​CNV calling while previously called CNVs were lifted over to GRCH38. Samples were​

​genotyped on either Illumina or Affymetrix array.​

​For samples that were provided as IDAT files, the Illumina command line version of Genome​

​Studio was used in conjunction with platform-specific manifest and cluster files to produce​

​genotype call (GTC) files. Relevant features were extracted from GTC files to obtain final​

​report files with probes, genotypes, Log R Ratio (LRR), and B Allele Frequency (BAF) for each​

​sample. For samples that were not mapped to GRCH38, probe genome positions were​

​converted to hg38 using the LiftOver tool. Samples within each platform were grouped into​

​batches by plate.  For Illumina/PsychChip arrays, CNVs were called using two methods:​

​PennCNV and iPattern. For Affy6 arrays, CNVs were called using four methods: PennCNV,​

​iPattern, CScore, and Birdsuite. For Affy5 and Affy500K arrays, CNVs were called using two​

​methods: PennCNV and Birdsuite. For Axiom arrays, CNVs were called using two methods:​

​PennCNV and QuantiSNP. The consensus of CNV calls from multiple callers was created by​

​merging CNVs at the sample level and retaining CNVs that were called by at least 2 methods.​

​1.1 Sample QC​

​Quality control (QC) was performed first at the sample level, and conducted independently​

​for each microarray platform,according to methods from our previous CNV GWAS of​

​schizophrenia (Marshall et al. 2017​​5​​). For Illumina​​arrays, LRR standard deviation, BAF​

​standard deviation, and GC waviness factor were extracted from PennCNV log files. Samples​

​were retained if each of the measures were within 3 SD of the median. Affymetrix arrays​

​used MAPD and waviness-sd parameters from affy power tools. Samples were further​

​evaluated based on the number and total length of autosomal CNVs detected, and were​

​retained if these values did not exceed 3 SD of the mean. The proportion of the​

​chromosome that was tagged as a CNV was calculated and samples were excluded if >10%​

​of the chromosome was marked as a CNV region to filter possible aneuploidies.​

​1.2 CNV QC​

​Large CNVs that were fragmented were merged.  CNVs <10kb in length or containing <10​

​probes were excluded. CNV calls were removed if they spanned the centromere or telomere​
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​(100kb from end of chromosome) or had >50% overlap with segmental duplications,​

​immunoglobulin, or T cell receptor (recurrent CNVs were processed without segmental​

​duplications, immunoglobulin, and T cell receptor filters ). The call set was restricted to rare​

​CNVs with ≤10% frequency within-platform or across all platforms.​

​2. Ancestry Principal Components and Ancestry Partitioning​

​We extracted a subset of SNPs with < 1% missingness across all platforms (12,185 SNPs) and​

​performed a principal component analysis using the flashPCA software​​78​​. In order to​

​genetically infer the ancestry of each individual,  we used the SNPweights software​​79​ ​on the​

​same subset of SNPs to calculate % ancestry based on a reference panel containing 6​

​different populations (751 EUR, 687 EAS, 630 SAS, 568 AFR, 41 AMR, 22 OCE). Samples were​

​categorized into 5 large homogeneous groupings based on the following criteria used in a​

​previous study​​80​ ​39 (Table S2, Fig S1): EUR: subjects​​with EUR ≥ 90%, AFR/AFAM: subjects​

​with EUR < 90% & AFR ≥ 5% & EAS/SAS/AMR/OCE < 5%, ASN/ASAM: subjects with EUR <​

​90% & (EAS ≥ 5% or SAS ≥ 5%) & AFR/AMR/OCE < 5%, LAT: subjects with EUR < 90% & AMR​

​≥ 5% & EAS/SAS/AFR/OCE < 5% or EUR < 90% & AMR ≥ 60% & EAS < 20% & SAS < 15% &​

​AFR/OCE < 5%, MIX: Uncategorized subjects.​

​3. Gene QC​

​To avoid having false positive findings arising due to a platform or dataset biases, we​

​performed an extra filtering step of the genes being included in the gene set analysis. For​

​each gene, separately for DELs and DUPs, CNV frequency was calculated per platform and​

​dataset. Given the reduced penetration of the most recurrent CNVs, the incident frequency​

​of such CNVs can be higher than that of disease prevalence. In particular, 15q11.2 DEL​

​(major risk locus for ASD and SCZ) has been reported to have an incident rate between​

​0.57-1.27%​​81​​, thus, using an inclusive frequency​​threshold, wWe then limited the CNVs to​

​those with frequency lower than 2% across platforms and datasets.  In addition, we​

​calculated weight deviance score (WDS) of CNV frequency per platform/dataset and used​

​that to derive a platform/dataset specificity index (SI). Specifically, for each gene, CNV​

​frequency (C​​i​​) for a particular platform/dataset was​​compared to the expected CNV​

​frequency (E​​i​​) estimated from across platforms/datasets​​as shown in Eq.1.​

​E​​i​ ​= N​​i​​*C​​all​​/N​​all​ ​(Eq.1)​

​where for a particular platform/data i, E​​i​ ​is the​​expected CNV frequency, N​​i​ ​is the sample​

​size, C​​all​ ​is the CNV frequency in the entire dataset,​​and N​​all​ ​is the entire dataset sample size.​

​WDS​​i​ ​= (C​​i​​-E​​i​​)/sqrt(E​​i​​*N​​i​​)​ ​(Eq.2)​

​Then WDS​​i​ ​was calculated as Eq. 2. With the max WDS​​across platforms/datasets​

​representing the specificity index. We removed genes having dataset_SI ≥ 0.2 and​

​platform_SI > 0.6 from subsequent analyses.​
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​4. Gene set data​

​4.1 Cortical regions​

​To generate gene sets for different cortical regions of the human brain, we acquired gene​

​expression data in the brain from Allen Human Brain Atlas (AHBA;​

​https://human.brain-map.org/static/download)​​46​​, multimodal​​brain parcellation from​

​Glasser’s brain regions​​45​​. Using the Abagen toolbox​​(version 0.1.3;​

​https://github.com/rmarkello/abagen)​​82​​, we mapped​​brain parcels and gene expression​

​data, and then performed gene expression normalization and scaling. Specifically, a robust​

​sigmoid function was used to normalize the expression data across genes to address​

​inter-sample variation, while min-max normalization was applied after to scale the gene​

​expression across tissue samples. Using the left hemisphere, we defined 180 regions from​

​Glasser’s brain regions​​83​​. To generate the gene sets,​​the region-mean expression levels of​

​each gene were z-transformed across the regions. Genes were then assigned to cortical​

​region(s) when their z-score>1. The median gene set size was 4,429 genes (see​​Table S1​​). To​

​visualize cortical region results, we used ggseg v1.6.5​​84​ ​and ggsegGlasser R libraries for​

​Glasser’s brain regions.​

​4.2 Cell types​

​We obtained single-cell RNA-seq data from Velmeshev et al., 2023​​44​​, which contains the​

​data >700,000 nuclei covering both prenatal and postnatal development periods and 8​

​defined cell type clusters. The 8 defined cell type clusters were 1. Oligodendrocyte precursor​

​cells (OPC), 2. Vascular cells (Vasc), 3. Excitatory neurons (ExNeu), 4. Oligodendrocytes​

​(Oligo), 5. Interneurons (InNeu), 6. Microglia (Mg), 7. Astrocytes (ASst), and 8. Glial​

​progenitors (Gpc). Using the cluster result from the original study, we redefined the cluster​

​by taking into account the developmental period of the cell. Doing so, we obtained 12 cell​

​type clusters; 1. postnatal Opc, 2. postnatal Vasc, 3. postnatal ExNeu, 4. postnatal Oligo, 5.​

​postnatal InNeu, 6. postnatal Mg, 7. postnatal Ast, 8. prenatal ExNeu, 9. prenatal Ast, 10.​

​prenatal Opc, 11. prenatal InNeu, and 12. prenatal Gpc. We then generated cell type marker​

​gene sets using FindAllMarkers() function from the Seurat package. Genes were assigned to​

​a particular cell type cluster with the highest average log2 fold-change only when the​

​corresponding p-value is < 0.05 (​​Table S1​​). The gene​​set size for cell types were smallest in​

​prenatal OPC (181 genes), and largest in postnatal Mg (2,058 genes) with a median of 1,223​

​genes.​

​4.3 Molecular pathways and pathway clusters defined using EnrichmentMap​

​We compiled gene sets from multiple databases including Gene Ontology​​41​​, KEGG pathways​
​42​​, and Reactome​​43​​. We filtered the gene sets to​​include only those with size between 50​
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​and 500 genes, excluding sets with broader definition (>500 genes) and those with low​

​statistical power (<50 genes). In total, we acquired 2,453 gene sets. To reduce dependency​

​between tests for multiple testing correction, we further exclude 758 more gene sets​

​through a step-down approach. Specifically, for each gene set, we removed any smaller​

​subset with substantial gene overlap (Jaccard’s index >0.75). The gene set sizes for molecular​

​pathways range from 50 genes to 495 genes with a median of 145 genes.​

​To summarize the pathway associations, we applied the EnrichmentMap Cytoscape plugin​​49​

​on the top associated gene sets (BH-FDR<5%, with z-score>0) from all the conditions. There​

​were 361, 106, 7, and 5 gene sets associated with SCZ, ASD, BD, and ADHD, respectively. By​

​limiting to pathway clusters with at least 3 gene set members, this results in 19 pathway​

​clusters. We then constructed new gene sets by merging all gene sets within each cluster for​

​subsequent analyses.​

​5. Gene set burden analysis and sample-weighted meta analysis​

​Differences in genotyping platforms have been known to confound CNV detection given the​

​variance in probe coverage. While the most common way to tackle platform bias in CNV data​

​analysis is to model the effect as one of the covariates, however, the effect is not well​

​controlled in a single regression model. In this study, we performed gene set burden analysis​

​independently for different genotyping platforms and meta-analyzed the summary statistics​

​derived from the individual platform analysis. Using ASD and SCZ as a preliminary​

​experiments, in both conditions, we found a smaller genomic inflation factor or lambda (λ)​

​value (Eq.3) in the meta-analysis result (λ​​ASD​​=1.78,​​λ​​SCZ​​=3.35) compared to the mega-analysis​

​result (using platform as a covariate, λ​​ASD​​=1.82,​​λ​​SCZ​​=3.66).​

​λ=median(ꭓ​​2​​)/0.455​ ​(Eq.3)​

​where  ꭓ​​2​​is chi-square statistics, and 0.455 is the​​theoretical mean of chi-square​

​distribution.​

​Specifically, we performed the gene set analysis on platforms where there are at least 50​

​cases and 50 controls. For each platform, a univariate analysis was conducted to compare​

​the burden of genes in a gene set impacted by DELs or DUPs between cases and controls.​

​The univariate analysis was done in one of two ways, either 1) a traditional case-control​

​comparison for each individual condition, or 2) a family-based comparison. For the​

​traditional case-control comparison, logistic regression was applied by regressing the​

​number of genes in a gene set impacted by DELs or DUPs on the affection status (1 =​

​affected, 0 = unaffected). Population structure (PC1-10), sex, and the number of genes​

​outside the gene set impacted by DELs or DUPs were used as covariates to correct for any​

​biases in the population, sex and total burden load. For the family-based comparison, we​

​applied conditional logistic regression the same way logistic regression was applied, except​
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​that samples were matched by family ID. A likelihood ratio test was done to estimate p-value​

​by comparing two regression models with and without the testing variable, in this case, a​

​gene set burden.​

​A sample-weighted meta-analysis was applied to account for substantial differences in​

​sample size between platforms. We derived the weight for each platform based on the​

​effective sample size as shown in Eq.4.​

​Weight​​i​ ​= sqrt(4/(1/Ncase​​i​ ​+ 1/Nctrl​​i​​))​ ​(Eq.4)​

​where Ncase​​i​ ​is the number of cases in platform​​i​​,​​and Nctrl​​i​ ​is the number of controls in​

​platform​​i​​.​

​6. Gene burden analysis​

​We generated gene-level summary statistics by meta-analyzing the summary statistics from​

​individual platform gene burden analysis. Similar to the gene set burden analysis, the gene​

​burden analysis was done by either performing a logistic regression for case-control dataset,​

​or conditional logistic regression for family-based dataset. We regressed the status of the​

​CNV whether or not a sample has DELs or DUPs overlapping a particular gene on the​

​affection status of the condition. Like gene set burden analysis, population structure​

​(PC1-10), and sex were corrected in the analysis, with family ID being a random effect​

​variable for conditional logistic regression. As multigenic CNVs might drive correlation​

​between tests and that would affect multiple testing correction, genes were merged when​

​the Jaccard index estimated from the proportion of CNVs commonly found between genes​

​was >0.75. Since we only used the gene burden results to visualize findings from the main​

​analysis, we did not report them in this study.​

​7. Correlation analysis of CNV association and Sensorimotor-Association axis and​

​pathway-S-A-axis gene set stratification​

​We investigated how CNV associations distributed along the cortical gradient using the​

​dominant brain transcriptomic variance data compiled in Dear et al​​51​​. This is the PC1 of​

​AHBA transcriptomic profile​​46​ ​projected on the Glasser​​parcellation​​45​​. The data was​

​processed to exclude spatially inconsistent genes and, under sampling parcellations with a​

​low number of donors (<6 donors). As a result, the final principal component analysis was​

​performed on 134 parcellations and 7,937 genes. The CNV meta-analysis summary statistics​

​of 134 Glasser parcellations was then compared with the PC1 AHBA using Spatial​

​Permutation Inference (SPIN test​​59​ ​with 10,000 permutations)​​with Kendall coefficient​

​analysis.​

​To stratify gene set by the S-A axis, we first compute the Kendall coefficient of each gene​

​against the PC1 AHBA. The gene expression matrix was preprocessed and obtained from​

​Dear et al​​51​ ​where it contains the data for 10,028​​genes, of which 8,588 genes are a member​

​of at least one gene set. This identified ~76% of the genes (n=6,552) to be correlated with​
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​the S-A axis at nominal significant level (p<0.05). We then stratified each gene set into 1)​

​sensorimotor cortex set (tau>0, p<0.05), and 2) association cortex set (tau<0, p<0.05),​

​leaving out other non-correlated genes from the subsequent analysis.​

​8. Genetic correlations based on gene-set summary statistics​

​We compared each pair of summary statistics (e.g., a pair of DEL and DUP summary​

​statistics) 1) within the same condition to assess dosage sensitivity at the gene set level in​

​each condition, and 2) between two conditions to assess gene set profile similarity between​

​conditions. To do so, we performed a Kendall rank correlation analysis of the z-scores​

​estimated from the meta-analysis of gene set burden results across individual platforms.​

​To examine correlations between cortical maps (e.g., CNV associations, transcriptomic​

​gradient map, etc.), we applied a commonly used spatial Kendall’s correlation and assessed​

​significance against a two-sided spatial autocorrelation-preserving null mode (SPIN test)​​59​​,​

​accounting for high inter-regional correlations as a result of spatial smoothing. To reduce the​

​influence of gene set size on the z-score and the estimated correlation, we regressed out the​

​gene set size from the z-score and performed correlation analysis on the residuals.​

​Using stratified gene set summary statistics, we estimated genetic correlations in 2 ways: (1)​

​First, was to treat each diagnosis-dosage combination as an independent component and to​

​examine the correlations of each (12 x 12,​​Table S11​​).​​(2) Second we examined the​

​correlation of all the gene-set effects combined by stacking DEL and DUP summary statistics​

​and aligning them directly between diagnoses (​​Table​​S12​​). Genetic correlations of​

​independent diagnosis-dosage combinations showed greater contrast between diagnostic​

​categories (​​Fig. S5g​​).​

​9. Latent factor analysis​

​We performed a latent factor analysis on the two-way (pathway-cell-type, pathway-brain)​

​and three-way (pathway-cell-type-brain) stratified gene set summary statistics to investigate​

​the shared and convergent dosage effects amongst the 6 psychiatric conditions using psych R​

​library. The number of factors was optimized using a scree plot (elbow plot) of PCA on the​

​summary statistic where a 3-factor solution was chosen (​​Fig. S4​​).​

​We specified a 3-factor solution using the fa() function, which estimates factor loadings that​

​describe how each diagnosis-dosage combination contributes to the latent factors. A​

​heatmap of the factor loading matrix, styled similarly to the genomic SEM plots, was​

​generated to visualize how diagnoses align with these latent dimensions. To relate individual​

​pathway gene sets to the latent factors, we computed the factor score for each gene set as a​

​product between their z-scores and the factor loadings across diagnosis-dosage​

​combinations, producing a second heatmap that highlights which biological pathways align​

​most strongly with each latent genetic factor. For this second heatmap, specifically for​
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​pathway-cell-type stratified gene sets, we performed a sign-based bi-clustering on the​

​heatmap where pathways are in rows, and cell types are in columns. The pathways and cell​

​types were ordered in a descending order based on their average factor scores. This resulted​

​in two main clusters of groups of pathways and cell types for i) positive and ii) negative​

​factor scores.​

​All 2 way and 3 way stratification were included in the mixed-effects model analysis (​​Fig. 4​​).​

​A factor analysis of three-way stratified gene sets (​​Fig. S8)​ ​produced similar factor solutions,​

​genetic correlations and factor scores as the results in​​Figure 5​​. However, overall signal was​

​comparatively weak due to the sparsity of the counts in the 3-way stratification of the data​

​and the sparsity of gene sets that could be included in the analysis (stratifying pathway, by​

​celltype, brain and dosage resulted in  >50% of gene sets meeting the minimum size of 30​

​genes,​​Fig. S7​​). Thus main results in​​Figure 5​​include​​only the 2 way (pathway-cell type and​

​pathway-brain) gene sets.​

​10. Linear model analysis investigating variance explained by different genetic factors​

​Using stratified gene set summary statistics, we evaluated which levels of biological​

​organization best explain the variation in the gene-set effects within each diagnosis. We​

​performed linear modeling on the effect sizes of the stratified gene-sets (z-scores) with​

​different combinations of pathway, cell type, brain, and dosage as independent variables.​

​For each diagnostic category, variance explained (​​R²​​)​​in summary statistics was calculated for​

​the full model, the main effects, and the interactions of these factors.​

​For example, suppose we would like to test for the effect of a cell type variable and its​

​interaction term. Let​​m0​​be the full model of all​​three variables (e.g.,​​logit(y) ~​

​pathway*celltype*dosage​​),​​m1​​be the model without​​the interaction term with all three​

​variables (e.g.,​​logit(y) ~ pathway*celltype + celltype*dosage​​),​​m2​​be the additive model​

​without the evaluating variable (e.g.,​​logit(y) ~​​pathway + dosage​​), and​​m3​​be the additive​

​model with all three variables (e.g.,​​logit(y) ~ pathway​​+ celltype + dosage​​). The​​R​​2​ ​of the full​

​model is from m0, the​​R​​2​​of the main effect is estimated​​as​​R​​2​​m3​​-​​R​​2​​m2​​, and the​​R​​2​ ​of the​

​interaction term is estimated as​​R​​2​​m0​​-​​R​​2​​m1​​. A likelihood​​ratio test was performed to​

​estimate the level of significance for each comparison through the​​anova()​​function in R.​
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​Supplementary materials​

​Fig. S1 | Gene set burden analysis (GSBA) workflow​

​A diagram showing the analytical procedure done for the gene set analysis of CNV data.​

​First, CNVs were called and filtered down to rare CNVs at 2% frequency across platform and​

​ancestry. Then, for each individual condition, to maximize the statistical power, we​

​performed a cross-ancestry analysis, and also stratified the analysis by population groups;​

​European (EUR), African (AFR), American (AMR), and Asian (ASN). For each stratified​

​analysis, the gene-set burden comparison were done independently for each genotyping​

​platform, then their summary statistics were meta-analyzed. For the burden comparison, we​
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​either performed a logistic regression for case-control data, or a conditional logistic​

​regression for family-based data where family ID was used as a strata. Meta-analysis was​

​done using a sample-weighted procedure (Eq.3-4), as it has shown a better robustness​

​compared to a standard-error-based procedure. For the result of molecular pathways, we​

​further clustered them using EnrichmentMap to obtain representative pathway clusters.​

​Fig. S2 | Comparing GSBA results between the full cohort and subjects of only European​

​ancestry​​- scatter plots comparing summary statistics​​(z statistics from the sample-weighted​

​meta analysis) between the analysis of European subset and the analysis of all ancestry. Beta​

​coefficients estimated from linear model regressing z statistics from European analysis on​

​the z statistics of cross-ancestry analysis.​
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​Fig. S3 | Correlation of cortical gene set effects with additional sensory–association​

​cortical gradients.​​Scatter plots show the correlation​​between gene-set burden z-scores for​

​DEL (​​a,b​​) and DUP (​​c,d​​) for two independent measures​​of cortical organization: the T1w/T2w​

​ratio which reflects regional variation in intracortical myelination, and the principal gradient​

​of resting-state fMRI. T1w/T2w and fMRI measures aligned to the Glasser grain maps were​

​obtained from Markello et al.​​52​ ​, both of which parallel​​the S-A axis derived from​

​transcriptional principal components(Fig. 3). Correlation of CNV effects with these gradients​
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​supports the spatial specificity of gene-dosage associations across multiple cortical​

​modalities. Together, these analyses highlight the convergent spatial patterning of CNV​

​effects along major anatomical and functional cortical hierarchies. (​​a​​) DEL z-score and T1-T2​

​ratio, and (​​b​​) DEL z-score and fMRI. (​​c​​) DUP z-score​​and T1-T2 ratio, and (​​d​​) DUP z-score and​

​fMRI. Solid trend lines indicate significant correlation where p​​SPIN​​<0.05. Brain maps of T1-T2​

​ratio and fMRI are shown in (​​e​​) and (​​f​​) where colors​​indicate the z-score.​

​Fig. S4 |​​Using elbow plot (scree plot), we estimated​​an optimal number of factors to be 3​

​factors (variance drop threshold<5)​
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​Fig. S5​​| Factor analysis on two-way pathway stratification​​summary statistics without (by​

​cell type, and by brain region) genome-wide significant (GWS) loci included in the analysis.​

​Genetic correlations between diagnosis-dosage from (​​a​​) the full analysis and (​​b​​) the analysis​

​without GWS loci. Single asterisks (*) indicate nominal significance (p<0.05), while double​

​asterisks indicate significance after multiple testing correction (q<0.05), and a factor loading​

​threshold of > 0.25 was applied to determine factor members. (​​c​​) Correlation of genetic​

​correlation calculated from full analysis and no GWS loci analysis. Factor loadings of​

​diagnoses reveal distinct signatures of diagnostic categories from (​​d​​) the full analysis and (​​e​​)​

​no GWS loci analysis. (​​f​​) Correlation of factor loadings​​from full analysis and no GWS loci​
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​analysis. For (​​c​​) and (​​f​​) scatterplots, solid trend lines indicate significant correlation. Kendall’s​

​Tau and corresponding p-value are reported in the title of the scatterplot. (​​g​​) QQ-plot​

​comparing the distributions of correlation coefficients (Kendall’s Tau) when DEL and DUP​

​effects in each diagnosis are treated as separate components (y-axis, Table S11) vs when the​

​full sum stats of DEL and DUP are aligned between diagnoses (x-axis, Table S12) . The​

​negative tail of the y-axis distribution on the QQ plot was weakly skewed, suggesting that​

​the distribution was enriched for effects that diverge between diagnoses.​

​Fig. S6| Gene sets and functional terms linked to latent factors F1, F2 and F3 highlight​

​neural processes that underlie orthogonal dimensions of gene-trait relationships.​​(​​a​​) a​

​heatmap showing full gene set associations of all two-way pathway-stratified gene-sets (i.e.,​

​pathway-cell-type, and pathway-brain stratification). Red-white-blue color scale indicates​

​gene set effect size from sample size weighted meta-analysis (z-score). Yellow-green-blue​

​color scale indicates the F1, F2 and F3 factor scores for each gene set. Asterisks indicate gene​

​set association that meets FDR correction in the combined summary statistics on 6​

​diagnostic categories (FDR<10%).  **factor scores with absolute value >1. (​​b​​) To illustrate​

​pathway-cell type and pathway-brain associations that contribute to factors, subsets of​

​diagnosis-dosage and gene-sets were selected based on factor loadings and factor scores**​

​for F1, F2 and F3 and sorted by factor score. (​​c​​)​​A bar plot highlighting pathway and cell-type​

​terms that were enriched among positively or negatively loaded gene sets in panel B relative​

​to the full summary statistics (fisher exact test P < 0.05).​
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​Fig. S7| Gene set size of stratified pathways.​​(​​a​​)-(​​c​​)​​Histograms display the distribution of​

​gene set size when stratified the pathway clusters by (​​a​​) S-A axis, (​​b​​) 12 cell types, and (​​c​​)​

​both S-A axis and cell types. Vertical dashed line indicates our 50 genes cut-off for gene sets​

​to be included in the analysis. (​​d​​) Venn diagrams​​show the number of genes intersected​

​between the major pathway gene sets (Chromatin regulation, MAPK signaling, Calcium​

​signaling, and Synaptic transmission), Postnatal Excitatory Neurons, and Sensorimotor or​

​Association genes.​
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​Fig. S8|​​Factor analysis of three-way pathway-celltype-brain​​stratification​​. The result shows​

​that factor F2 and F3 are corresponding to the factor F1 and factor F2 of the main factor​

​analysis result (​​Fig 5.​​) (​​a​​) Genetic correlation between​​diagnosis-dosage components. (​​b​​)​

​Factor loadings. Factor scores for gene sets were shown as heatmaps for each of the three​

​factors; where (​​c​​) and (​​d​​) correspond to factor F1,​​sensorimotor, and association gene sets,​

​respectively. Similarly, (​​e,f,g,h​​) heatmaps show the​​factor scores for the factor F2, and F3.​
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